slides

Approximating Node-Weighted k-MST on Planar Graphs

Abstract

We study the problem of finding a minimum weight connected subgraph spanning at least kk vertices on planar, node-weighted graphs. We give a (4+\eps)-approximation algorithm for this problem. We achieve this by utilizing the recent LMP primal-dual 33-approximation for the node-weighted prize-collecting Steiner tree problem by Byrka et al (SWAT'16) and adopting an approach by Chudak et al. (Math.\ Prog.\ '04) regarding Lagrangian relaxation for the edge-weighted variant. In particular, we improve the procedure of picking additional vertices (tree merging procedure) given by Sadeghian (2013) by taking a constant number of recursive steps and utilizing the limited guessing procedure of Arora and Karakostas (Math.\ Prog.\ '06). More generally, our approach readily gives a (\nicefrac{4}{3}\cdot r+\eps)-approximation on any graph class where the algorithm of Byrka et al.\ for the prize-collecting version gives an rr-approximation. We argue that this can be interpreted as a generalization of an analogous result by K\"onemann et al. (Algorithmica~'11) for partial cover problems. Together with a lower bound construction by Mestre (STACS'08) for partial cover this implies that our bound is essentially best possible among algorithms that utilize an LMP algorithm for the Lagrangian relaxation as a black box. In addition to that, we argue by a more involved lower bound construction that even using the LMP algorithm by Byrka et al.\ in a \emph{non-black-box} fashion could not beat the factor \nicefrac{4}{3}\cdot r when the tree merging step relies only on the solutions output by the LMP algorithm

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021