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Capacitated Vehicle Routing with Non-Uniform

Speeds

Inge Li Gørtz, Marco Molinaro⋆, Viswanath Nagarajan, and R. Ravi∗

1 Technical University of Denmark
2 Tepper School of Business, Carnegie Mellon University

3 IBM T.J. Watson Research Center
4 Tepper School of Business, Carnegie Mellon University

Abstract. The capacitated vehicle routing problem (CVRP) [17] involves
distributing (identical) items from a depot to a set of demand locations,
using a single capacitated vehicle. We study a generalization of this prob-
lem to the setting of multiple vehicles having non-uniform speeds (that
we call Heterogenous CVRP), and present a constant-factor approxima-
tion algorithm.
The technical heart of our result lies in achieving a constant approxima-
tion to the following TSP variant (called Heterogenous TSP). Given a
metric denoting distances between vertices, a depot r containing k vehi-
cles having respective speeds {λi}

k
i=1, the goal is to find a tour for each

vehicle (starting and ending at r), so that every vertex is covered in some
tour and the maximum completion time is minimized. This problem is
precisely Heterogenous CVRP when vehicles are uncapacitated.
The presence of non-uniform speeds introduces difficulties for employ-
ing standard tour-splitting techniques. In order to get a better under-
standing of this technique in our context, we appeal to ideas from the
2-approximation for scheduling in parallel machine of Lenstra et al. [15].
This motivates the introduction of a new approximate MST construction
called Level-Prim, which is related to Light Approximate Shortest-path

Trees [14]. The last component of our algorithm involves partitioning
the Level-Prim tree and matching the resulting parts to vehicles. This
decomposition is more subtle than usual since now we need to enforce
correlation between the size of the parts and their distances to the depot.

1 Introduction

The capacitated vehicle routing problem (CVRP) is an extensively studied com-
binatorial optimization problem (see e.g., [17] and references therein). CVRP is
defined on a metric space (V, d), where V is a finite set of locations/vertices and
d : V × V → R+ a distance function that is symmetric and satisfies triangle
inequality. There is a depot vertex r ∈ V that contains an infinite supply of an
identical item, and each vertex u ∈ V demands some units qu of this item. A
single vehicle of capacity Q ≥ 0 is used to distribute the items. The objective is

⋆ Supported in part by NSF grant CCF-0728841.



to find a minimum length tour of the vehicle that satisfies all demands subject
to the constraint that the vehicle carries at most Q units at any time.

CVRP is closely related to the Traveling Salesman Problem (TSP). It is clear
that CVRP reduces to TSP in the absence of capacity constraint. More interest-
ingly, a reverse relation is also known—essentially the best known approximation
algorithm for CVRP [13] achieves a guarantee of ρ + 1, where ρ is the best ap-
proximation ratio for TSP.

In practice, it is natural to have a fleet of multiple vehicles that can run in
parallel. The objective can then be to either minimize the sum of completion
times of all the vehicles or to minimize the maximum completion time over all
vehicles (or the makespan of the routing). Furthermore the vehicles can all be
identical (same speed) or heterogeneous (have different speeds). In either case, it
is not hard to see that the total completion time objective reduces to the usual
CVRP on a single maximum-speed vehicle, and constant-factor approximation
algorithms readily follow.

When the objective is to minimize the makespan with identical vehicles, ideas
for approximating the regular CVRP problem using a tour-splitting heuristic
introduced by Frederickson et al. [11] can be easily adapted to derive a constant-
factor approximation algorithm (see below).

This motivates the Heterogenous Capacitated Vehicle Routing Problem (HetCVRP)
that we consider. Here, a fleet of k vehicles with non-uniform speeds and uniform
capacities is initially located at the depot vertex r. The objective is to satisfy
the demands subject to the capacity constraints while minimizing the makespan.
Our main result is a constant-factor approximation algorithm for HetCVRP.

Most of our algorithmic ideas lie in solving the special case of HetCVRP

when there is no capacity constraint. This problem, which we call HetTSP, is a
generalization of TSP that might be of independent interest. For most of this
paper, we will focus on obtaining a constant-factor approximation for HetTSP.

1.1 Previous Techniques

Tour-splitting solutions: To illustrate the use of known techniques, we out-
line how to obtain a constant-factor approximation algorithm for HetTSP with
uniform speeds [11]. First, notice that the union of the tours of OPT connects all
vertices, and hence a minimum spanning tree (MST) has length at most k ·OPT.
Then consider a MST, duplicate its edges and take an Euler tour C, which is of

length d(C) ≤ 2k ·OPT. Now split C into k segments of lengths at most d(C)
k

by
removing edges. Finally, the tour for the ith vehicle is obtained by connecting
both endpoints of the ith segment of C to the depot. Since twice the distance
from the depot to any vertex is a lower bound on OPT, the length of each tour
is at most 3 · OPT and hence this solution is a 3-approximation. We remark
that this can be extended to obtain an O(1)-approximation for HetCVRP with
uniform speeds (e.g., using Theorem 4 in Sect. 4).

At a very high level, this strategy has two main components: (1) Partition-
ing an MST into manageable-sized connected parts; (2) assigning these parts to



vehicles. This simple idea—which was already present in the 70’s—is the cen-
tral piece of many heuristics and approximations for vehicle routing problems
(e.g., [11, 13,?,?,?,?,?]). However, it is not clear how to employ this technique
in the presence of vehicles with multiple speeds. This is because the two main
components now need some correlation: a small part of the MST, which should
be assigned to a slower vehicle, must also be relatively closer to the depot in
order to be reachable by this vehicle.

Set-cover based solutions: For HetTSP with non-uniform speeds, previous
approaches seem to give only a logarithmic approximation, as follows. Guess the
optimal makespan OPT (within a constant factor). If each vehicle of speed s
is given a length budget of s · OPT, then the vehicles can collectively cover
all vertices. Using an approximation algorithm for k-MST [12] (or the related
orienteering problem [3, 5]) within a maximum-coverage framework (see e.g.. [6]),
we can obtain tours of length OPT that cover a constant fraction of all vertices.
Repeating this coverage step until all vertices are covered gives a solution to
HetTSP of makespan O(log n) · OPT. The intrinsic problem of this approach is
that it is too general—in fact, the above algorithm also yields a logarithmic
approximation even in the setting where the metric faced by each vehicle is
arbitrary (instead of just scaling by its speed), and this generalization of HetTSP

can be shown to be set-cover hard. It is unclear whether the approximation of
this set-covering based approach can be improved for HetTSP.

1.2 Results, Techniques and Outline

We extend the tour-splitting approach described above to obtain the following
result.

Theorem 1. There are constant-factor approximation algorithms for HetTSP

and HetCVRP.

In order to obtain the approximation for HetTSP, we abstract the require-
ments of the two components in the tour-splitting strategy. First, we specify
conditions which guarantee that a collection of r-rooted trees is “assignable”,
that is, each vehicle can visit the nodes of the trees assigned to it within time
O(M) (Definition 1). The conditions in Definition 1 are based on the LP to ob-
tain a 2-approximation for scheduling in unrelated parallel machines by Lenstra
et al. [15].

Secondly, instead of partitioning an MST as in the previous section, we con-
sider more structured spanning trees which we call Level-Prim trees. Consider
grouping the vertices ordered according to their distance from r into levels,
where the ith level includes all vertices within distance 2iM .5 The Level-Prim

tree is simply the tree resulting from running Prim’s algorithm with the restric-
tion that all nodes in a level are spanned before starting to pull in nodes from
the next. A Level-Prim tree has two important properties: (i) The vertices along

5 Notice that given the rounding of vehicle speeds to powers of two, vertices in level i
can only be served by vehicles of speed 2i or higher given the makespan bound M .



every root-leaf path are monotonically nondecreasing in level and (ii) For every
suffix of levels, the subgraph induced on it costs at most O(1) times its induced
MST. The first condition, which is the departing point from MSTs, greatly sim-
plifies the decomposition procedure carried in the next step. The second property
guarantees that we can decompose a Level-Prim tree into an assignable collection.
These properties are formalized in Theorem 2.

The Level-Prim construction combines both MST and shortest-path distances
from a root, so it is not surprising that this structure is related to Light Approx-

imate Shortest-Path Trees (LAST) introduced by Khuller et al. [14]. Indeed, we
use the existence of a suitably defined LAST in proving Theorem 2. We remark,
however, that the properties guaranteed by LASTs are not enough for our pur-
poses (see Sect. 3.2).

The third main component of our approximation for HetTSP is decomposing
Level-Prim into an assignable collection of r-rooted trees. Roughly, we partition
the edges of Level-Prim into subtrees while ensuring that each subtree consisting
of vertices in levels up to i (and hence is at a distance of about 2iM from the
root) also has length approximately 2iM , and thus can be assigned to a vehicle of
speed about 2i. This partition, which relies on the two properties of Level-Prim,
gives a collection of unrooted trees which is assignable. Due to the length of these
trees, the extra distance to connect them to the root r can be charged to their
edges, hence this collection can be turned into a r-rooted assignable collection.

In order to obtain an approximation to HetCVRP, we reduce this problem to
approximating HetTSP in a suitably modified metric space. This new distance
function encodes any additional trips to and from the root that a vehicle has to
make if it runs out of capacity. The exact transformation is presented in Sect. 4.

1.3 Related Work

For the CVRP, the best known approximation ratio [13] is essentially ρ+1 where ρ
is the best guarantee for TSP. The current best values for ρ are ρ = 3

2 for general
metrics [7], and ρ = 1 + ǫ (for any constant ǫ > 0) for constant dimensional
Euclidean metrics [1, 16]. This has been improved slightly to 1+ρ · (1− 1

Q
)− 1

3Q3

when Q ≥ 3 [4]. Recently, Das and Mathieu [9] gave a quasi-polynomial time
approximation scheme for CVRP on the Euclidean plane.

Several variants of TSP have been studied, most of which have a min-sum
objective. One related problem with min-max objective is nurse station loca-

tion [10], where the goal is to obtain a collection of trees (each rooted at a
distinct depot) such that all vertices are covered and the maximum tree length
is minimized. Even et al. [10] gave a 4-approximation algorithm for this problem,
based on partitioning the MST and assigning to trees along the lines of Sect. 1.1;
their second step, however, involves a non-trivial bipartite matching subproblem.

In proving the properties of Level-Prim, we use Light Approximate Shortest-

Path Trees introduced by Khuller, Raghavachari and Young [14], building on
the work on shallow-light trees of Awerbuch, Baratz and Peleg [2]. An (α, β)-
LAST is a rooted tree that has (a) length at most β times the MST and (b)
the distance from any vertex to the root (in the tree) is at most α times the



distance in the original metric. Khuller et al. [14] showed that every metric has

an
(

α, 1 + 2
α−1

)

-LAST (for any α > 1) and this is best possible.

2 Model and Preliminaries

The input to the Heterogenous TSP (HetTSP) consists of a metric (V, d) denoting
distances between vertices, a depot r ∈ V and k vehicles with speeds {λi}

k
i=1

greater than or equal to 1. The goal is to find tours {τi}
k
i=1 (starting and ending

at r) for each vehicle so that every vertex is covered in some tour and which

minimize the maximum completion time maxk
i=1

d(τi)
λi

.
At the loss of a factor of two in the approximation, we assume that the λi’s

are all (non-negative integral) powers of 2. Then, for each integer i ≥ 0 we use
µi to denote the number of vehicles with speed 2i. Let OPT denote the optimal
value of this modified instance of HetTSP.

Let G = (V, E) be the complete graph on vertices V with edge-weights cor-
responding to the distance function d. For any set F ⊆ E of edges, we set
d(F ) =

∑

e∈F de. Given any (multi)graph H and a subset U of its vertices,
H [U ] denotes the subgraph induced on U and H/U denotes the graph obtained
by contracting vertices U to a single vertex (we retain parallel edges). Moreover,
for any pair of vertices u, v in H , we use dH(u, v) to denote the length of the
shortest path in H between u and v.

3 Algorithm for HetTSP

Assume that we have correctly guessed a value M such that M
2 ≤ OPT ≤ M (we

address how to find M in the end of Sect. 3.3.) We partition the set of vertices
V according to their distance to r:

V0 = {u ∈ V : d(r, u) ≤ M}, and

Vi = {u ∈ V : d(r, u) ∈ (2i−1M, 2iM ]}, for all i ≥ 1.

The vertices in Vi are referred to as level i vertices. For any i ≥ 0, we use V≤i as
a shorthand for ∪i

j=0Vj and similarly V<i = ∪i−1
j=0Vj = V≤i−1.

We define the level of an edge (u, v) ∈ E as the larger of the levels of u and v.
For each i ≥ 0, Ei denotes the edges in E of level i. Note that de ≤ 2i+1M for all
e ∈ Ei, since both end-points of e are in V≤i and the triangle inequality bounds
its distance by the two-hop path via the root. We use the notation E≤i = ∪i

j=0Ej

and E≥i = ∪j≥iEj .

3.1 Assignable Trees

We start by studying collections of trees that can be assigned to vehicles in a
way that each vehicle takes time O(M) to visit all of its assigned trees. In the
following let α and β be integers.



Definition 1 (Assignable Trees). A collection of r-rooted trees
⋃

i≥0 Ti cover-

ing all vertices V is called (α, β)-assignable if it satisfies the following properties.

1. For each i ≥ 0 and every T ∈ Ti, d(T ) ≤ α 2i M .

2. For each i ≥ 0,
∑

j≥i d(Tj) ≤ βM
∑

j≥i−1 2j µj.

Intuitively, the trees in Ti can be assigned to vehicles with speed 2i so as
to complete in time O(αM). Condition (2) guarantees that the trees

⋃

j≥i Ti

targeted by vehicles of speed 2i−1 and above stand a chance of being handled
by them within makespan O(βM). Interestingly, these minimal conditions are
enough to eventually assign all trees in collection to vehicles while guaranteeing
makespan O((α + β)M).

Lemma 1. Given an assignable collection
⋃

i≥0 Ti of r-rooted trees, we can ob-

tain in polynomial time an (4α + 2β)-approximation for HetTSP.

To prove this lemma6, we show that condition (2) guarantees the existence
of a fractional assignment of trees where each vehicle incurs load at most βM .
Then using condition (1) and a result on scheduling on parallel machines [15],
we round this assignment into an integral one while increasing the load on each
vehicle by at most 2αM . We loose an extra factor of 2 to convert the trees into
routes.

Fractional Assignment. Consider the bipartite graph H whose left side contains
one node for each tree in

⋃

i Ti and whose right side contains one node for each
vehicle. (We identify the nodes with their respective trees/vehicles.) There is an
arc between the tree T ∈ Ti and a vehicle of speed 2j if j ≥ i − 1.

Consider the following b-matching problem in H : for each tree T ∈ Ti, we
set b(T ) = d(T ) and for each vehicle u of speed 2j we set b(u) = β2jM . A
(left-saturating) b-matching is one which fractionally assigns all b(T ) units of
each tree T such that no vehicle u is assigned more than b(u) units. Notice that
a feasible b-matching gives a fractional assignment of trees where each vehicle
incurs load at most βM .

Then our goal is to show the existence of a b-matching in H . Using a standard
generalization of Hall’s Theorem (e.g., see page 54 of [8]), we see that H has a fea-
sible b-matching iff for every set V of trees,

∑

T∈V b(T ) is at most
∑

u∈N(V ) b(u),

where N(V ) is the neighborhood of V . However, the structure of H allows us to
focus only on sets V which are equal to

⋃

j≥i Tj for some i.7 Using this revised

condition, H has a b-matching iff for all i,
∑

j≥i d(Tj) ≤ βM
∑

j≥i−1 2jµj . Since

6 We remark that a direct proof of Lemma 1 is also possible, but the route we take
reveals more properties of the requirement at hand and could potentially be useful
in tackling generalizations of HetTSP.

7 To see that all other inequalities are dominated by those coming from such sets,
first notice that if V contains a tree in Ti then N(V ) already contains all vehicles of
speed 2j for j ≥ i − 1. Then adding to V extra trees in

S

j≥i
Tj does not change its

neighborhood and thus leads to a dominating inequality.



this is exactly condition (2) in Definition 1, it follows that H indeed has a b-
matching (which can be obtained in polynomial time using any maximum flow
algorithm [8]).

Scheduling Parallel Machines. We show how to round the fractional assignment
obtained in the previous section. We consider each tree as a “job” and each
vehicle as a “machine”, where the “processing time” pT,u of a tree T in a vehicle
u of speed 2j is d(T )/2j; then the “makespan” of a vehicle is exactly equal to
the sum of the processing times of the trees assigned to it.

Let xT,u denote the fraction of tree T assigned to vehicle u given by scaling
down a b-matching in H (i.e., if the matching assigns d units of T to vehicle u, we
have xT,u = d/d(T )). The feasibility of the matching gives

∑

T xT,upT,u ≤ βM
for all u. Moreover, by construction of the edges of H , xT,u > 0 for T ∈ Ti

implies that u has speed at least 2i−1. Then using property (1) of assignable
trees we get that xT,u > 0 implies pT,u ≤ 2αM . These two properties guarantee
that x is a feasible solution for the natural LP formulation for the scheduling
problem with a feasible makespan value of βM and the maximum processing
time t set to 2αM . Theorem 1 of [15] then asserts that x can be rounded into
an integral assignment of trees to vehicles such that the load on any vehicle is
at most (2α + β)M .

As in Sect. 1.1, we can transform each tree in
⋃

i≥0 Ti into a cycle while
at most doubling its length, which then gives a (4α + 2β) approximation for
HetTSP. This concludes the proof of Lemma 1.

3.2 Level-Prim

In order to obtain an assignable collection of r-rooted trees for our instance,
we formally introduce Level-Prim trees. These are the trees obtained by the the
following procedure.

Algorithm 1 Level-Prim(G)

1: For each i ≥ 0, let Hi be an MST for G[V≤i]/V<i.
2: return H =

S

i≥0
Hi.

Note that Level-Prim trees can alternately be defined by modifying Prim’s
algorithm such that nodes in level i are only considered to be added to the tree
after all nodes in levels below i have already been added.

Theorem 2. A Level-Prim tree H = {Hi}i≥0 satisfies the following:

• The vertex-levels along every root-leaf path are non-decreasing.

• For each i ≥ 0,
∑

j≥i d(Hj) ≤ 8 · MST (G/V<i).

Note that the second property in Theorem 2 mirrors the second property in
Definition 1. A formal connection between the two is established via the following



lemma that uses an optimal vehicle routing solution to derive a feasible spanning
tree connecting a suffix of the level sets.

Lemma 2 (Lower Bound). For each level ℓ ≥ 0, MST(G/V<ℓ) ≤ M ·
∑

j≥ℓ−1 2j µj.

Proof. Consider an optimal solution for HetTSP and let E∗ be the set of edges
traversed by vehicles in this solution; label each edge in E∗ by the vehicle that
traversed it. Clearly E∗ connects all vertices to the root r.

Only vehicles having speed at least 2ℓ−1 can reach any vertex in V≥ℓ (since
a vehicle of speed s travels distance at most s · OPT ≤ s · M). Thus every edge
in E∗ ∩E≥ℓ must be labeled by some vehicle of speed at least 2ℓ−1. This implies
that d (E∗ ∩ E≥ℓ) ≤ M ·

∑

j≥ℓ−1 2j µj , since the right hand side is a bound on

the total length traversed by vehicles having speed at least 2ℓ−1.
On the other hand, since E∗ connects all vertices, E∗ ∩E≥ℓ contains a span-

ning tree of G/V<ℓ. Thus MST(G/V<ℓ) ≤ d (E∗ ∩ E≥ℓ) ≤ M ·
∑

j≥ℓ−1 2j µj .

We get the following corollary of Theorem 2.

Corollary 1. A Level-Prim tree H = {Hi}i≥0 satisfies the following:

• The vertex-levels along every root-leaf path are non-decreasing.

• For each i ≥ 0,
∑

j≥i d(Hj) ≤ 8M
∑

j≥i−1 2j µj.

In the rest of this section, we prove Theorem 2. It is easy to see that for every
ℓ,

⋃ℓ

j=1 Hj spans G[V≤ℓ], hence the procedure produces a spanning tree for G.
Moreover, by construction we obtain that every root-leaf path in H traverses the
levels in non-decreasing order as desired. Thus, we focus on proving the second
property in the theorem.

Instead of comparing the length of the edges in H with an MST, it turns
out to be much easier to use a specific LAST tree as proxy for the latter. The
following LAST is implicit in the construction given in [14]. Recall that a spider

is a tree with at most one vertex (the center) having degree greater than two.

Theorem 3 ([14]). Given any metric (V, d) with root r, there exists a spanning

spider L with center r such that:

• For each u ∈ V , the distance from r to u in L is at most 2 · d(r, u).
• The length of L is at most four times the MST in (V, d), i.e. d(L) ≤ 4·MST.

We remark that we cannot use a LAST directly instead of Level-Prim since the
former does not need to have the properties asserted by Theorem 2; it is easy to
find a LAST which does not satisfy the first property, while Figure 1 shows that
the second can also be violated by an arbitrary amount. Using these spider LASTs
we can obtain the main lemma needed to complete the proof of Theorem 2.

Lemma 3. For any graph G and any Level-Prim tree H on G, we have d(H) ≤
8 · MST(G).

Proof. Consider a spider LAST L for G and let P denote the set of all root-leaf
paths in L; note that P is edge-disjoint.



Consider any root-leaf path P = (r = u1 → u2 → . . . → uk) in P . We claim
that P crosses levels almost in an increasing order. Specifically, there does not
exist a pair of nodes ui, uj ∈ P with i < j, ui ∈ Vℓ and uj ∈ V≤ℓ−2. Suppose
(for a contradiction) that this were the case; then we would have that

dL(r, uj) = dL(r, ui) + dL(ui, uj) ≥ dL(r, ui) ≥ d(r, ui) > 2ℓ−1M,

where the last inequality uses ui ∈ Vℓ. On the other hand, d(r, uj) ≤ 2ℓ−2M
since uj ∈ V≤ℓ−2; so we obtain dL(r, uj) > 2 · d(r, uj), which contradicts the
definition of L (see Theorem 3).

Now we transform L into another spider L′ which traverses levels in non-
decreasing order as follows. For each root-leaf path P = (r = u1 → u2 → . . . →
uk), perform the following modification. Let {a1, a2, . . . , ak′} be the subsequence
of P consisting of the vertices in even numbered levels, i.e. each ai ∈ L2ℓ for some
ℓ ≥ 0. Similarly, let {b1, b2, . . . , bk′′} be the subsequence of P consisting of the
vertices in odd numbered levels. Define two paths Peven := (r → a1 → . . . → ak′ )
(shortcutting P over nodes bi’s) and Podd = (r → b1 → . . . → bk′′) (shortcutting
P over ai’s). Observe that both Peven and Podd cross levels monotonically: if not
then there must be some i < j in P with ui ∈ Vℓ and uj ∈ V≤ℓ−2, contrary
to the previous claim. Also, by employing the triangle inequality we have that
d(Peven), d(Podd) ≤ d(P ). Finally define the spider L′ as the union of the paths
{Peven, Podd} over all root-leaf paths P ∈ P .

By construction, the vertex levels along each root-leaf path of L′ are non-
decreasing. Additionally d(L′) =

∑

P∈P (d(Peven) + d(Podd)) ≤ 2
∑

P∈P d(P ) =
2 · d(L) ≤ 8 · MST, by Theorem 3. Now partition the edges of L′ as:

∆ℓ =

{

L′[V0] if ℓ = 0,
L′[V≤ℓ] \ L′[V≤ℓ−1] if ℓ ≥ 1.

By the monotone property of paths in L′, it follows that L′[V≤ℓ] is connected
for every ℓ ≥ 0. Thus ∆ℓ is a spanning tree in graph G[V≤ℓ]/V<ℓ. Since Hℓ in
the Level-Prim construction, is chosen to be an MST in G[V≤ℓ]/V<ℓ, we obtain
d(Hℓ) ≤ d(∆ℓ). So, d(H) =

∑

ℓ≥0 d(Hℓ) ≤
∑

ℓ≥0 ∆ℓ = d(L′) ≤ 8 · MST. This
completes the proof of the lemma.

Completing proof of Theorem 2. We now prove the second property in Theo-
rem 2. Lemma 3 directly implies this property for i = 0. For any level i > 0
consider the graph G′ = G/V<i; observe that

⋃

j≥i Hj is a Level-Prim tree for
G′ (due to the iterative construction of H =

⋃

ℓ≥0 Hℓ). Thus applying Lemma 3
to graph G′ and its Level-Prim

⋃

j≥i Hj , we have
∑

j≥i d(Hj) ≤ 8 · MST(G′) =
8 · MST(G/V<i).

3.3 Decomposition Procedure

In this section we decompose a Level-Prim tree into an assignable collection
⋃

i≥0 Ti of r-rooted trees. Motivated by Corollary 1, the idea is to essentially
break each subgraph Hi into many pieces and connect them to r in order to



form the set of trees Ti. More specifically, assume for now that each connected
component in Hi is large enough, i.e. has length at least 2iM . Then for each
i ≥ 0, break the connected components of Hi into trees of length approximately
2iM ; add to each tree the shortest edge connecting them to r and set Ti as
the collection of r-rooted trees obtained. By construction we get that

⋃

i≥0 Ti

satisfies the first property of an assignable collection. Moreover, notice that each
edge added to connect a tree to the root has approximately the same length
as the tree itself; this guarantees that d(Ti) . 2d(Hi). It then follows that the
collection

⋃

i≥0 Ti is assignable.
Notice that it was crucial to break Hi into trees of length at least approxi-

mately 2i. But this is problematic when Hi has a small connected component. In
this case we show that such a small component is always attached to (“dangling”
from) a large enough component in Hi−1 (otherwise the dangling edge to a much
earlier level will already make this component heavy enough not to be small);
then we simply treat the small component as an integral part of the latter.

Now we formally describe the proposed decomposition procedure.
Step 1. Let S0 contain the subtree H0 = H

⋂

E0. For each level i ≥ 1: partition
edges H

⋂

Ei into a collection Si of (unrooted) subtrees such that each subtree
contains exactly one edge from V<i to Vi. For any τ ∈ Si call the unique edge
from V<i to Vi its head-edge h(τ). Note that such a partition is indeed possible
since H[V≤i]/V<i is connected.

Any subtree in Si (for i ≥ 0) is referred to as a level i subtree. Note that
head-edges are defined only for subtrees in level 1 and above.
Step 2. For each level i ≥ 0: mark those τ ∈ Si that have d(τ) ≥ 2i−3M .
In addition, mark the tree H0 in S0. Let Sm

i and Su
i denote the marked and

unmarked subtrees in Si.
Step 3. For each level i ≥ 1 and unmarked σ ∈ Su

i : define π(σ) as the subtree
in

⋃

j<i Sj containing the other end-point of h(σ).

Claim. For i ≥ 1 and unmarked σ ∈ Su
i , π(σ) ∈ Si−1. Moreover, π(σ) is marked.

Proof. Since σ is unmarked in level i ≥ 1, d(h(σ)) ≤ d(σ) < 2i−3M . So the
end-point v of h(σ) in π(σ) satisfies d(r, v) ≥ 3

2 · 2i−2M , otherwise d(h(σ)) ≥
2i−1M − d(r, v) > 2i−3M . In particular v ∈ Vi−1 and thus π(σ) ∈ Si−1.

For the second part of the claim, notice that if i = 1 then π(σ) = H0, which
is always marked. So suppose i ≥ 2. From the above, π(σ) is in level i − 1 ≥ 1
and hence contains a head-edge. This implies that π(σ) contains some vertex
u ∈ V<i−1, namely an end-point of h(π(σ)). But then d(π(σ)) ≥ d(u, v) ≥
d(r, v) − d(r, u) ≥ 2i−3M , where we used d(r, u) ≤ 2i−2M since u ∈ V<i−1 and
d(r, v) ≥ 3

2 · 2i−2M from above. Thus π(σ) must be marked.

Step 4. For each level i ≥ 0 and marked τ ∈ Sm
i : define Dangle(τ) = π−1(τ) as

the set of all unmarked σ ∈ Su
i+1 having π(σ) = τ . Clearly d(σ) ≤ 2i−2M for all

σ ∈ Dangle(τ).
Step 5. For each level i ≥ 0 and marked τ ∈ Sm

i : partition the tree τ ∪Dangle(τ)
into subtrees T1, . . . , Tq such that the first q − 1 trees have length in the range
[2i+1M, 2i+2M ] and Tq has length at most 2i+2M . Notice that this is possible



since all edges of τ ∪ Dangle(τ) belong to E≤i+1 and hence have length at most
2i+1M . Finally, add the shortest edge from r to each of these new subtrees to
obtain a collection Ti(τ) of r-rooted trees.

Claim. For any T ∈ Ti(τ), we have d(T ) ≤ 3 · 2i+1M .

Proof. Notice that every T ∈ Ti(τ) consists of a Tj (for some 1 ≤ j ≤ q) and an
edge from r to a node in V≤i+1. Since the former has length at most 2i+2M and
the latter has length at most 2i+1M , it follows that d(T ) ≤ 3 · 2i+1M .

Claim.
∑

T∈Ti(τ) d(T ) ≤ 5 · [d(τ) + d(Dangle(τ))].

Proof. We break the analysis into two cases depending of q. Suppose q = 1,
namely Ti(τ) consists of a single tree T . In this case T = τ ∪ Dangle(τ) ∪ {e},
where e is an edge to r. If i = 0 then d(e) = 0 and the result holds directly.
If i > 0 then τ has a node in V<i and hence d(e) ≤ 2i−1M . Because τ is
marked and different than H0, the lower bound on its length implies that d(e) ≤
2i−1M ≤ 4d(τ) ≤ 4(d(τ)+d(Dangle(τ)). The result follows by adding the length
of τ ∪ Dangle(τ) to both sides.

Now suppose q > 1. Since all trees in Ti(τ) lie in V≤i+1, each edge from
the root in Ti(τ) has length at most 2i+1M . So the left hand side is at most
∑q

j=1 d(Tj)+q ·2i+1M . But for j < q we have d(Tj) ≥ 2i+1M , so the last term of

the previous expression can be upper bounded by q
(q−1)

∑q−1
j=1 d(Tj). This bound

is smallest when q = 2, which then gives
∑

T∈Ti(τ) d(T ) ≤ 3
∑q

j=1 d(Tj) ≤ 3d(τ).
This concludes the proof of the claim.

Step 6. For each level i ≥ 0: define Ti =
⋃

τ∈Sm
i

Ti(τ).

The following lemma summarizes the main property of our decomposition pro-
cedure.

Lemma 4. The collection {Ti}i≥0 obtained from the above procedure is (6, 40)-
assignable.

Proof. By Claim 3.3, each tree in Ti has length at most 3·2i+1M . So the collection
satisfies condition (1) of Definition 1.

Fix any i ≥ 0 for condition (2) in Definition 1. Due to Corollary 1, it suffices
to prove that

∑

j≥i d(Tj) ≤ 5 ·
∑

j≥i d(Hj). Using Claim 3.3 we obtain that

d(Tj) =
∑

τ∈Sm
j

d(Ti(τ)) ≤ 5 ·
∑

τ∈Sm
j

[d(τ) + d(Dangle(τ))] = 5 · d(Sm
j ) + 5 · d(Su

j+1).

The last equality above uses the fact that that {Dangle(τ) : τ ∈ Sm
j } is a partition

of Su
j+1. Thus:

∑

j≥i

d(Tj) ≤ 5 ·
∑

j≥i

d(Sm
j ) + 5 ·

∑

j≥i

d(Su
j+1) ≤ 5 ·

∑

j≥i

d(Sj) = 5 ·
∑

j≥i

d(Hj). (1)

This concludes the proof of Lemma 4.



Summary of the Algorithm. Our algorithm starts with an initial low guess of M
and runs the Level-Prim procedure. If the second condition in Corollary 1 does
not hold for this run, we double the guess for M and repeat until it is satisfied
(this happens the first time that M reaches the condition for the correct guess:
M
2 ≤ OPT ≤ M). We use the decomposition in this section summarized in

Lemma 4 to obtain a (6,40)-assignable collection of trees. Using Lemma 1 on
this collection gives us the desired constant approximation ratio by observing
that the guess M in this step obeys M ≤ 2 · OPT.

4 Generalization for HetCVRP

The input to the Heterogenous CVRP (HetCVRP) consists of a metric (V, d)
denoting distances between vertices, depot r ∈ V (containing an infinite supply
of items), demands {qv}v∈V and k vehicles with speeds {λi}

k
i=1, each having

capacity Q. A solution to HetCVRP consists of tours {σi}
k
i=1 (starting and ending

at r) for each vehicle so that all demands are satisfied and each vehicle carries at
most Q items at any point in time. The objective is to minimize the maximum

completion time, maxk
i=1

d(σi)
λi

. We study the “split-delivery” version of CVRP

here, where demand at a vertex may be served by multiple visits to it; however,
our result easily extends to the “unsplit-delivery” HetCVRP.

We show that the HetCVRP problem can be reduced to HetTSP in an approx-
imation preserving way; so we also obtain an O(1)-approximation for HetCVRP.
The idea in this reduction is to modify the input metric based on lower-bounds
for CVRP [13]. In order to avoid ambiguity, we use OPTvrp to denote the optimum
for HetCVRP and OPTtsp to denote the optimum for HetTSP.

Theorem 4. Consider an instance I of HetCVRP. There is a poly-time con-

structible instance J of HetTSP such that OPTtsp(J ) = O(1) ·OPTvrp(I). More-

over, a solution to J of makespan M can be converted in poly-time to a solution

to I with makespan O(M).

Proof. Let I be an instance of HetCVRP as specified above. Standard scaling
arguments can be used to ensure that Q is polynomial in n and qv ∈ {0, 1, . . . , Q}
for all v ∈ V (details in the full version).

Let G = (V, E) denote the complete graph on vertices V with edge-weights
equal to distances d. Augment G to a new graph H by adding vertices V ′ = {vp :
v ∈ V, p ∈ [qv]}, and edges E′ = {(v, vp) : v ∈ V, p ∈ [qv]}; each edge (v, vp)

has weight d(r,v)
Q

. For any vertex v ∈ V , the vertices {vp : p ∈ [qv]} are referred

to as copies of v. Let (V ′, ℓ) denote the metric induced on vertices V ′ where ℓ
denotes the shortest-path distances in graph H . We let J be the instance of
HetTSP on metric (V ′, ℓ) with depot r and k vehicles having speeds {λi}

k
i=1.

Since Q ≤ poly(n) this reduction runs in polynomial time.
For any graph L and subset S of vertices, let MinStL(S) denote the min-

imum length Steiner tree connecting S. For any subset T ⊆ V ′ and v ∈ V
let Nv(T ) denote the number of v-copies in T ; also define π(T ) = {v ∈ V :



Nv(T ) > 0}. Observe that for any T ⊆ V ′ we have MinStH(T ) = MinStG(π(T ))+
∑

v∈V
Nv(T )·d(r,v)

Q
by the definition of graph H .

We first show that OPTtsp(J ) = O(OPTvrp(I)). Consider an optimal solu-
tion {σi}

k
i=1 to I. For each i ∈ [k], let ci(v) ∈ {0, 1, . . . , qv} denote the units of

demand at vertex v ∈ V served by vehicle i, and let Si = {v ∈ V : ci(v) > 0}.

Note that
∑k

i=1 ci(v) = qv for all v ∈ V ; hence we can choose S′
i ⊆ V ′ for

each i ∈ [k] such that ∪k
i=1S

′
i = V ′ and Nv(S

′
i) = ci(v) for all v ∈ V, i ∈ [k].

Since σi is a capacitated tour in G serving demands {ci(v) : v ∈ Si}, we have

d(σi) ≥ max
{

MinStG({r} ∪ Si),
∑

v∈Si

ci(v)·d(r,v)
Q

}

using the (connectivity and

capacitated routing) lower-bounds for CVRP [13]. Thus MinStH({r} ∪ S′
i) =

MinStG({r} ∪ Si) +
∑

v∈Si

ci(v)·d(r,v)
Q

≤ 2 · d(σi). Now consider the solution

to J where the ith vehicle visits vertices S′
i along the minimum TSP tour on

{r} ∪ S′
i, for all i ∈ [k]; the distance traversed by the ith vehicle is at most

2 · MinStH({r} ∪ S′
i) ≤ 4 · d(σi). So the HetTSP objective value of this solution

is at most maxi∈[k]
4·d(σi)

λi
= 4 · OPTvrp(I).

Now consider a solution {τi}
k
i=1 to J with makespan M . Let Ri ⊆ V ′ de-

note the vertices that are served by each vehicle i ∈ [k]. Since τi is a TSP
tour on {r} ∪ Ri, we have d(τi) ≥ MinStH({r} ∪ Ri) = MinStG({r} ∪ π(Ri)) +
∑

v∈V
Nv(Ri)·d(r,v)

Q
. Now fix i ∈ [k] and consider the instance of CVRP on vertices

{r} ∪ π(Ri) with demands {Nv(Ri) : v ∈ π(Ri)}. As mentioned in the previous

paragraph, max
{

MinStG({r} ∪ π(Ri)),
∑

v∈π(Ri)
Nv(Ri)·d(r,v)

Q

}

is a lower-bound

for this instance, and the algorithm from [13] returns a solution σi within a
ρ = O(1) factor of this lower-bound. It readily follows that {σ}k

i=1 is a feasible

solution to I with makespan at most maxi∈[k]
ρ·d(τi)

λi
= O(M).

We note that this algorithm returns a non-preemptive HetCVRP solution,
i.e., each item once picked up at the depot stays in its vehicle until delivered
to its destination. Moreover, the lower-bounds used by the HetCVRP algorithm
also hold for the (less restrictive) preemptive version, where items might be left
temporarily at different vertices while being moved from the depot to their final
destination. Thus our algorithm also bounds the “preemption gap” (ratio of
optimal non-preemptive to preemptive solutions) in HetCVRP by a constant.

5 Open Problems

One interesting open question regards the approximability of HetTSP and HetCVRP

when vehicles are located in multiple different depots across the space. The cur-
rent definition of an assignable collection and the definition of Level-Prim cru-
cially depend on the assumption of a unique depot, hence an extension to the
multi-depot case is likely to require new ideas. Another interesting direction is
to consider HetCVRP with non-uniform capacities, where the ideas presented in
Sect. 4 do not seem to generalize directly.



References

1. S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman
and other geometric problems. J. ACM, 45:753–782, September 1998.

2. B. Awerbuch, A. Baratz, and D. Peleg. Cost-sensitive analysis of communication
protocols. In Proceedings of the 9th Annual Symposium on Principles of Distributed

Computing, pages 177–187, 1990.

3. A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approx-
imation algorithms for orienteering and discounted-reward tsp. SIAM J. Comput.,
37(2):653–670, 2007.

4. A. Bompadre, M. Dror, and J. Orlin. Probabilistic Analysis of Unit Demand
Vehicle Routing Problems. J. Appl. Probab., 44:259–278, 2007.

5. C. Chekuri, N. Korula, and M. Pál. Improved algorithms for orienteering and
related problems. In SODA, pages 661–670, 2008.

6. C. Chekuri and A. Kumar. Maximum coverage problem with group budget con-
straints and applications. In APPROX-RANDOM, pages 72–83, 2004.

7. N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. Report 388, Graduate School of Industrial Administration, CMU, 1976.

8. W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combina-

torial optimization. John Wiley & Sons, Inc., New York, NY, USA, 1998.

9. A. Das and C. Mathieu. A Quasi-polynomial Time Approximation Scheme for
Euclidean Capacitated Vehicle Routing. In SODA, pages 390–403, 2010.

10. G. Even, N. Garg, J. Könemann, R. Ravi, and A. Sinha. Min-max tree covers of
graphs. Oper. Res. Lett., 32(4):309–315, 2004.

11. G. N. Frederickson, M. S. Hecht, and C. E. Kim. Approximation algorithms for
some routing problems. SIAM J. Comput., 7(2):178–193, 1978.

12. N. Garg. Saving an epsilon: a 2-approximation for the k-MST problem in graphs.
In Proceedings of the 34th Annual ACM Symposium on the Theory of Computing,
pages 396–402, 2005.

13. M. Haimovich and A. H. G. R. Kan. Bounds and heuristics for capacitated routing
problems. Mathematics of Operations Research, 10(4):pp. 527–542, 1985.

14. S. Khuller, B. Raghavachari, and N. E. Young. Balancing minimum spanning trees
and shortest-path trees. Algorithmica, 14(4):305–321, 1995.

15. J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algorithms for schedul-
ing unrelated parallel machines. Mathematical Programming, 46:259–271, 1990.
10.1007/BF01585745.

16. J. S. B. Mitchell. Guillotine Subdivisions Approximate Polygonal Subdivisions: A
Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and
Related Problems. SIAM Journal on Computing, 28(4):1298–1309, 1999.

17. P. Toth and D. Vigo, editors. The vehicle routing problem. SIAM Monographs on
Discrete Mathematics and Applications, Philadelphia, PA, USA, 2002.



A Proof of Theorem 3

Define an (α, β)-spider as follows.

Definition 2. Given a metric (V, d) with root r, an α, β-spider is a spanning

spider such that

• For each u ∈ V , the distance from r to u in L is at most α · d(r, u).
• The length of L is at most four times the MST in (V, d), i.e. d(L) ≤ β ·MST.

We will show that the following algorithm produces an (α, β)-spider for G.

Algorithm 2 (α, β)-Spider

1: Consider an MST for G and traverse it in preoder to obtain a path S0 = S = (r =
u1 → u2 → . . . → un) such that d(S0) ≤ 2 · MST.

2: for i from 1 to n do

3: if dS(u1, ui) > αd(u1, ui) then

4: add (u1, ui) to S and mark ui.
5: for each marked node ui, remove (ui−1, ui) from S.
6: return S∗ = S.

Lemma 5. The graph S∗ returned by the algorithm is a spider.

Proof. Since the algorithm keeps adding edges to the path S0, it is clear that
before Step 5 only the root u1 and marked nodes have degree larger than 2.
Moreover, each marked node has degree exactly 3. Thus, after Step 5 we have
that only the root has degree larger then 2, and the lemma follows.

Lemma 6. S∗ is an (α, β)-spider.

Proof. First we prove that dS∗(u1, ui) ≤ αd(u1, ui) for all i. To see this, consider
S right before Step 5. It follows from Step 4 that dS(u1, ui) ≤ αd(u1, ui) for all
i. Noticing that S∗ is a shortest path tree of S from node u1 implies the desired
result.

Now we prove that S∗ satisfies the second property of (α, β)-spider. Define
v0 = u1 and let vi be the ith node marked by the algorithm. It is clear that
d(S∗) ≤ d(S0)+

∑k
i=1 d(u1, vi); so our goal is to upper bound the last summation.

Fix a node vi. Consider the beginning of the iteration where vi is marked. No-
tice that at this point dS(u1, vi) ≤ d(u1, vi−1)+dS(vi−1, vi), since edge (u1, vi−1)
was already added to S; since S0 is subgraph of S, it is also clear that the right
hand side is at most d(u1, vi−1) + dS0(vi−1, vi). However, since vi was marked,
we have that dS(u1, vi) > α · d(u1, vi), and then using the previous bounds we
obtain that α · d(u1, vi) < d(u1, vi−1) + dS0(vi−1, vi).

Adding the previous inequality over all vi’s we get that α
∑

i d(u1, vi) <
∑

i d(u1, vi−1) +
∑

i dS0(vi−1, vi). Noticing that d(u1, v0) = d(u1, u1) = 0 and
reorganizing leads to (α−1)

∑

i d(u1, vi) ≤
∑

i dS0(vi−1, vi). Finally, notice that



∑k
i=1 dS0(vi−1, vi) ≤ d(S0): this follows from traversing the path S0 and using

the triangle inequality. This gives the bound
∑

i d(u1, vi) ≤ d(S0)/(α − 1).
Plugging this back to a previous bound on the length of S∗ gives d(S∗) ≤

(1+1/(α−1))d(S0) ≤ (2+2/(α−1))d(S0). This concludes the proof of Theorem
3.

(a) MST on G (b) A (1,2)-LAST T on G

Fig. 1. Instance with depot plus n nodes in V0 (box and gray nodes) and n nodes in V1

(black nodes). The distance between each distinct pair or nodes in V0 is 1, the distance
from a gray node to a black node is also 1 and the distance between two distinct black
nodes is 1/n. Notice that d(T ∩ E1) = n while MST(G/V0) < 2.
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