
Scheduling over Scenarios on Two Machines�

Esteban Feuerstein1, Alberto Marchetti-Spaccamela2, Frans Schalekamp3,
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Abstract. We consider scheduling problems over scenarios where the
goal is to find a single assignment of the jobs to the machines which per-
forms well over all possible scenarios. Each scenario is a subset of jobs
that must be executed in that scenario and all scenarios are given explic-
itly. The two objectives that we consider are minimizing the maximum
makespan over all scenarios and minimizing the sum of the makespans
of all scenarios. For both versions, we give several approximation algo-
rithms and lower bounds on their approximability. With this research
into optimization problems over scenarios, we have opened a new and
rich field of interesting problems.

Keywords: job scheduling, makespan minimization, scenarios, approx-
imation.

1 Introduction

We consider optimization problems over scenarios where the goal is to find a
single solution that performs well for each scenario in a given set of scenarios.
In particular, we consider the scheduling problem where the objective function
is the makespan: we are given a set J of jobs, each with a processing time,
and a set of scenarios; each scenario is specified by a subset of jobs in J that
must be executed in that scenario. Our goal is to find an assignment of jobs
to machines that is the same for all scenarios and optimizes a function of the
makespan, i.e., the completion time of the last completed job, over all scenarios.
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The two objectives that we consider are minimizing the maximum makespan
over all scenarios and minimizing the sum of the makespan of all scenarios. We
note that when the input contains only a single scenario, both versions of the
problem reduce to the usual makespan minimization problem.

As an example, suppose that J contains three jobs, numbered 1, 2, and 3,
that must be executed on two machines; the processing time of job 1 is 2 while
the processing time of jobs 2 and 3 is 1. There are three scenarios S1 = {1, 2, 3}
and S2 = S3 = {2, 3}. Assigning job 1 to the first machine and jobs 2 and 3 to
the second machine minimizes the maximum makespan over all scenarios, while
assigning jobs 1 and 2 to the first machine and job 3 to the second one minimizes
the sum of the makespans of all scenarios.

The more egalitarian objective function of minimizing the maximummakespan
over all scenarios fits in the framework of robust optimization, where usually not
so much a finite set of scenarios is explicitly given, as in our problem, but ranges
for values of input parameters (see [3]). We will refer to this objective as the Min-
Max objective. The more utilitarian objective function of minimizing the sum
of the makespans of all scenarios fits in the framework of a priori optimization,
though a priori optimization has so far only been introduced as a problem where
the scenarios are random objects and the objective is to minimize the expected
objective value. In that sense, minimizing the sum of makespans could be seen
as the a priori problem with a uniform discrete distribution over a finite set of
fully specified scenarios. In general, the deterministic problem of optimizing over
a finite set of scenarios can be seen as an alternative to the stochastic a priori
setting [13], in case a limited number of likely scenarios exists. We refer to this
objective as the MinSum objective.

In an indirect way, combinatorial optimization problems over scenarios with
the MinSum objective have appeared as the first-stage problem in a boosted
sampling approach to two-stage stochastic optimization problems [11]. In [11],
scenarios are defined within a so-called black box, meaning that they can only
be learnt by sampling. From the black box, a finite set of scenarios is sampled,
giving rise to a deterministic optimization problem over the drawn set of scenar-
ios, in which a single solution needs to be found, that minimizes the sum of the
objective values for the drawn scenarios. In this sense some results on combina-
torial optimization problems over scenarios have appeared, like Vertex Cover,
Steiner Tree and Uncapacitated Facility Location [11].

Modeling optimization problems over a finite set of given scenarios yields a
rich source of interesting new combinatorial optimization problems, which are
in general harder than their single-scenario versions. Specifically, almost any
single-scenario scheduling problem has an interesting multi-scenario variation.
As mentioned before, in this paper we focus, as a first example, on minimizing the
maximum makespan over all scenarios and minimizing the sum (or, equivalently,
the average) of the makespan of all scenarios.

The specific setting of the scheduling problem over scenarios appears in situ-
ations where jobs have to be performed by skilled machines (workers), and some
investment is required to attain the skill for a particular job. In such situations,
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one should decide on an assignment of all possible jobs to the workers, such that
the workers can train for the jobs assigned to them ahead of time. The problem
then is to assign jobs (specializations) to machines (workers), so that the work-
load of a machine for any scenario of jobs, from a set of scenarios likely to occur,
is minimized. Examples of such a setting are assignment of clients to lawyers,
households to power sources, compile-time assignment of computational tasks to
processors. In most of such situations, the robust version of the problem with
the MinMax objective is rather plausible, especially in situations where a set of
likely scenarios to hedge against can be specified upfront.

Another motivation, though a bit indirect, comes from distributed informa-
tion retrieval: in a term-partitioned index, it is good to allocate to the same
processor terms appearing frequently together in queries, so as to minimize the
communication cost (to solve an intersection query between two terms that re-
side in different processors, one of the posting lists must be sent to the processor
holding the other). But this goal must be complemented with that of balancing
the load, as it is not viable to put all the terms in the same processor. There-
fore, it is necessary to divide “clusters” of commonly co-occurring terms among
the processors, trying to balance the load. Naturally, queries appear sequentially
over time and are not known a priori. One could, as an approximation, optimize
considering as input the more likely scenarios. The partition must indeed be
done a priori, because lists must be assigned to processors a priori.

To the best of our knowledge, this problem has not been considered in the
literature. An a priori version of scheduling with stochastic scenarios has been
studied in [4,5], albeit not from an approximation theory point of view, but
merely presenting experimental results, and with the scheduling objective of
minimizing the sum of completion times of all the jobs per scenario.

We now give a formal definition of the two problems we consider. We restrict
ourselves to the case of two machines. We are given a set of jobs J with for each
job j ∈ J a processing times pj, and a set of k scenarios S = {S1, S2, . . . , Sk},
where each scenario Si ∈ S is a subset of J . In each scenario, we are interested
in minimizing the makespan, but we are restricted to finding a solution, i.e., an
assignment of the jobs to the machines, that applies to every one of the scenarios.
Clearly, a solution that is good for one scenario may be bad for another. This
gives rise to specifying objectives that reflect the trade-off between the various
scenarios. In this paper we define the following two versions of the problem.

– MM2 Assign the jobs in J to two machines in such a way that the maximum
makespan over the given scenarios is minimized. In other words, if we denote
the makespan of a subset S ⊆ J of jobs by p(S) =

∑
j∈S pj, we are looking for

a partition A, Ā of J , that minimizes maxi=1,2,...,k max{p(A∩Si), p(Ā∩Si)}.

– SM2 Assign the jobs to the machines such that the sum of the makespans of
the given scenarios is minimized. Using the notation just introduced, we are
seeking a partition A, Ā of J , that minimizes

∑k
i=1 max{p(A∩Si), p(Ā∩Si)}.

For both objective functions, the problems are NP-hard, since the single-scenario
version is NP-hard. However, the single-scenario version is only weakly NP-hard
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for 2 machines and an FPTAS exists [1], whereas the problems defined here are
strongly NP-hard. We will give various approximability and inapproximability
results for several different versions of the problem depending on restrictions of
the input. In particular, the special cases that we consider are the following:

1. pj = 1 ∀j ∈ J , that is, the case where all processing times are unitary;
2. |Si| ≤ r ∀Si ∈ S, that is, the case where the number of jobs in each scenario

is bounded by a constant;
3. k = |S| is constant, that is, the case that the number of scenarios is a

constant.

In Section 2, we study the problem MM2; we show that the problem cannot
be approximated to within a ratio of 2 − ε already in the case where pj = 1
and a ratio of 3/2 if |Si| ≤ 3 and pj = 1. On the positive side, we give a
polynomial-time algorithm for the version in which every scenario contains 2
jobs. If k, the number of scenarios, is constant then there exists a PTAS; for
an arbitrary number of scenarios, a O(log2 k) approximation ratio exists. The
latter two results are a consequence of an observed direct relation to the so-called
Vector Scheduling problem (see Section 2 for its definition) and results of [6].

In Section 3, we study problem SM2. We prove inapproximability within
1.0196 assuming P �=NP, and within 1.0404 under the Unique Games Conjec-
ture [15]. On the positive side, we present a 3/2-approximate randomized algo-
rithm. For instances with scenarios of size at most 3, we use a reduction to Max

Cut to obtain a 1.12144-approximation algorithm. For scenarios of size at most
r, we present a reduction to Weighted Max Not-All-Equal r-Sat and use
this to obtain better-than-3/2- approximations for problems where the scenario
sizes are not larger than 4.

Some thoughts about related problems, and ideas for future research are con-
tained in a concluding section.

2 Minimizing Maximum Makespan

We obtain inapproximability of MM2 using a recent result [2] on the hardness of
Hypergraph Balancing: given a hypergraph find a 2-coloring of the vertices
such as to minimize over all hyperedges the discrepancy between the number of
vertices of the two colors.

Theorem 1. It is NP-hard to approximate MM2 with unitary jobs within ratio
2− ε.

This is remarkable since, trivially, any solution, for any job sizes, is 2-approximate
(since we consider the problem for two machines only). In the full version of this
paper [8] we prove a hardness bound of 3/2 when |Si| ≤ 3 and pj = 1. This
result completes the hardness characterization.

We now show that, if the number of jobs per scenario is 2, then the problem
is solvable in polynomial time.

Theorem 2. MM2 with |Si| = 2 for all Si ∈ S can be solved in timeO(|S| log |S|).
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Proof. We create a graph with a vertex for each job and connect by an edge the
jobs that appear together in a scenario. We define the weight of edge (j, k) to
be pj + pk, i.e., the sum of the processing times of the jobs associated to the
incident vertices. Note that a solution for the a priori scheduling problem is a
partitioning of the job set, and can be associated with a coloring of the vertices
in this graph problem with two color classes. The objective value is then equal to
the maximum of the highest weight of any monochromatic edge and the largest
processing time of any job.

In other words, we should find a 2-coloring of the vertices of this graph,
such that the maximum weight of a monochromatic edge is minimized. A lowest
weight edge in any odd cycle gives a lower bound on the objective value.

Consider the following algorithm. Starting with all vertices being part of their
own singleton component, and having color 1, we grow components by inserting
edges, and label the vertices with the component they belong to, and with a
color that can assume two values; 1 and 2. A color inversion of a vertex changes
the color of the vertex (i.e., if it is colored 1, the color is changed to 2, and vice
versa). We consider the edges in order of descending weight. When considering
the next edge, say (j, k), the following 3 cases can occur.

Case 1. Vertices j and k have the same color, and are in the same component.
We end the algorithm. An optimal partitioning of the job set is given by the
two color classes, where jobs that have color 1 (respectively, 2) are assigned to
machine 1 (respectively, 2) and the objective is equal to the weight of edge (j, k).

Case 2. Vertices j and k have different colors. If the vertices are in different
components, then we update the component label for all nodes of the smaller
component (breaking ties arbitrarily), so that all vertices have the same label.
We then proceed to the next edge.

Case 3. Vertices j and k have the same color, and are in different components.
In this case we invert the color of all nodes in the smaller component (breaking
ties arbitrarily), and then proceed as in Case 2.

By construction, two vertices of the same color in the same component are
joined by an even-length path. Therefore, when the algorithm terminates in
Case 1, we have found an odd cycle in the graph, of which this last edge has
lowest weight. Note that the assignment of jobs with the same color to the same
machine implies that the makespan of the scenario is bounded by the weight of
the last considered edge. Since the weight of any such edge is a lower bound on
the objective value, we have found an optimal solution. Its value is given by the
maximum of the weight of a monochromatic edge and pmax = maxj∈J pj .

The running time follows from the observation that any time we invert the
color and/or update the label of a vertex, it ends up in a component of at least
twice the size of the component it belonged to before. Hence, the label of a vertex
can be updated at most log |J | times. The total time can thus be bounded by
|S| log |S| time for sorting the edges by weight, plus |J | log |J | time for updating
the vertex colors and labels. Finally, we may assume without loss of generality
that each job appears in at least one scenario, so |S| ≥ |J |/2. 	
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Another sharp characterization w.r.t. the number of scenarios, is obtained
for the case of a constant number of scenarios. For jobs with unit processing
times, the problem can be solved exactly: given that the number of scenarios is
constant, there is only a constant number of job types, where the type of a job is
the set of scenarios it is in. Then, the number of jobs on machine 1 of each type
can be guessed. There are only a polynomial number of choices;, an extension
can also accommodate a constant number of machines in polynomial time. We
notice that this also solves SM2 under the same restrictions in polynomial time.

Theorem 3. MM2 and SM2 having jobs with unitary processing times can be
solved in polynomial time if the number of scenarios is constant.

A similar idea, with guessing the optimal value and rounding, leads to a PTAS
in the general case under a constant number of scenarios, but this is also implied
by the following result.

We conclude this section by noticing that if we consider any number of ma-
chines, the problem of minimizing the maximum makespan reduces to the Vec-

tor Scheduling problem, where each coordinate corresponds to a scenario.

Definition 1. In the Vector Scheduling problem we are given a set V of n
rational d-dimensional vectors v1, . . . , vn from [0,∞)d and a number m. A valid
solution is a partition of V into m sets A1, . . . , Am. The objective is to minimize
max1≤i≤m ||∑vj∈Ai

vj ||∞.

This problem is a d-dimensional generalization of the makespan minimization
problem, where each job is a d-dimensional vector and the machines are d-
dimensional objects as well. In our setting, the dimension d equals the number
of scenarios |S|. Each coordinate of job j equals its processing time in the cor-
responding scenario (either 0 or pj). Results of Chekuri et al. [6] on Vector

Scheduling can directly be translated into our setting.

Theorem 4 ([6]). For the problem of minimizing the maximum makespan over
scenarios Si ∈ S on m machines,

1. there exists a PTAS for the case that k = |S| is constant

2. there exists a polynomial-time O(log2 k)-approximation for k scenarios;
3. there exists no c-approximation algorithm for any c > 1, when dealing with

any number of scenarios.

3 Minimizing Sum of Makespans

We now turn our attention to SM2, the problem of minimizing the sum of the
makespans over all scenarios, in the case of 2 machines.

We start this section by noting that SM2 is MAXSNP-hard even with unitary
processing times and scenarios containing two jobs each.
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Theorem 5. SM2 is NP-hard to approximate to within a factor of 1.0196 and
UGC-hard to approximation to within a factor of 1.0404, even if all jobs have
length 1, and all scenarios contain two jobs.

The proof is through a reduction from Max Cut [9], and the hardness of
approximation results shown by H̊astadt [12] and Khot et al. [16]. The details
are given in the full version of this paper [8].

In the remainder of this section, we will give approximation results for SM2.
As for MM2 in the previous section, we notice that also for this problem any
solution is a trivial 2-approximation. In the remainder of this section, we will
first show that the algorithm that randomly assigns the jobs to the two ma-
chines independently with equal probability gives a 3/2-approximation. We then
show two deterministic approximation algorithms, which give good approxima-
tion guarantees if the number of jobs per scenario is small.

3.1 A Randomized Approximation Algorithm

Lemma 1. Consider a scenario S, and let A, Ā be any partitioning of the jobs in
S.When assigning each job of S to the twomachines independently with equal prob-
ability, the expected load of the least loaded machine is at least 1

2min{p(A), p(Ā)}.
Proof. An assignment of jobs to the two machines induces a partition of A into
sets A′, A′′, and a partition of Ā into sets Ā′, Ā′′ where the jobs in the same set
of the partition are assigned to the same machine. The sets A′, A′′, Ā′, Ā′′ are not
necessarily all non-empty. We will prove the lemma by showing that, conditioned
on the sets A′, A′′, Ā′, Ā′′, the machine load of the least loaded machine is at least
1
2 min{p(A), p(Ā)}, which implies that the statement also holds unconditionally.

Conditioned on the sets A′, A′′, Ā′, Ā′′, the least loaded machine has a load
of min{p(A′) + p(Ā′), p(A′′) + p(Ā′′)} with probability 1

2 (namely, if A′, Ā′ are
assigned to one machine, and A′′, Ā′′ to the other machine), and min{p(A′) +
p(Ā′′), p(A′′) + p(Ā′)} with probability 1

2 (namely, if A′, Ā′′ are assigned to one
machine, and A′′, Ā′ are assigned to the other machine). Hence, conditioned on
the partition of A into A′, A′′ and of Ā into Ā′, Ā′′, the expected load of the least
loaded machine is

1
2 min{p(A′) + p(Ā′), p(A′′) + p(Ā′′)}+ 1

2 min{p(A′) + p(Ā′′), p(A′′) + p(Ā′)}.

Note that a simple case analysis shows that the sum of the two terms is either
at least 1

2 (p(A
′) + p(A′′)) = 1

2p(A) or at least 1
2

(
p(Ā′) + p(Ā′′)

)
= 1

2p(Ā). So
the load of the least loaded machine is at least 1

2 min{p(A), p(Ā)}. 	

Theorem 6. Randomly assigning each job to the two machines independently
with equal probability is a 3/2-approximation for SM2.

Proof. Consider a scenario S, and let A be the set of jobs processed on machine 1,
and Ā = S\A the set of jobs processed on machine 2 in a schedule with minimum
makespan. Hence, the optimal makespan for S is max{p(A), p(Ā)}. By Lemma 1,
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the load of the least loadedmachine in scenarioS, if the jobs are randomly assigned
to the machines with equal probability, is at least 1

2 min{p(A), p(Ā)}. Hence, the
loadof themachinewith thehighest load is atmostp(A)+p(Ā)− 1

2 min{p(A), p(Ā)}
= max{p(A), p(Ā)} + 1

2 min{p(A), p(Ā)} ≤ 3
2 max{p(A), p(Ā)}.

Hence, the expected makespan for scenario S is at most 3
2 times the optimal

makespan for scenario S, which implies that the sum over all scenarios of the
expected makespans is at most 3

2 times the optimal summed makespan of all
scenarios. 	


We remark that the proof of the previous lemma bounds the objective value by
comparing the load on a machine in a given scenario to the load for the optimal
schedule for that scenario, rather than the optimal schedule for our problem.

It is easy to see that the analysis of the simple randomized algorithm is tight,
by considering an instance of two jobs {1, 2} with unitary execution time and one
scenario S1 = {1, 2}. The optimal solution is to assign one job to each machine,
whereas the randomized algorithm either assigns both jobs to the same machine
with probability 1

2 , or one job to each machine with probability 1
2 .

3.2 Deterministic Approximation Algorithms

To obtain a deterministic approximation algorithm, we show that the SM2 prob-
lem can be reduced to the Weighted Max Not-All-Equal Satisfiability

problem, that we will abbreviate as Max-Nae Sat.

Definition 2. In Max-Nae Sat, a boolean expression is given, and a weight
for each clause. A clause in the expression is satisfied if it contains both true
and false literals. The problem is to find an assignment of true/false values to
the variables, such as to maximize the total weight of the clauses satisfied.

Note that if r is such that |Si| ≤ r for all Si ∈ S, then by adding dummy
jobs of processing time 0, we can assume that every scenario contains exactly
the same number of jobs, i.e., |Si| = r for all Si ∈ S. We will reduce the SM2
problem with scenarios of size at most r to the Max-Nae Sat problem with
clauses of length r (Max-Nae r-Sat).

Theorem 7. A (1 − γr)-approximation for Max-Nae r-Sat implies a (1 +
2r−2γr)-approximation for the SM2 problem with |S| ≤ r for all scenarios S ∈ S.
Proof. We start by formulating the SM2 problem as a Max-Nae Sat prob-
lem. Each job j corresponds to a variable xj in the Max-Nae Sat instance.
An assignment of the variables in the Max-Nae Sat instance corresponds to
an assignment in SM2 as follows: machine 1 is assigned all jobs for which the
corresponding variable is set to true, and machine 2 processes all jobs for which
the corresponding variable is set to false.
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We now construct a set of weighted clauses for each scenario such that the
weight of the satisfied clauses for a given assigment is equal to the load of the least
loaded machine in the scenario. Hence, maximizing the weight of the satisfied
clauses will maximize the weight of the least loaded machine, and it will thus
minimize the weight of the machine with the heaviest load, i.e., the makespan.

For a given scenario S of SM2 with r jobs, we construct 2r−1 clauses of length
r as follows. For each partitioning of S into two sets A and Ā, we create a clause
denoted by CS({A, Ā}). In clause CS({A, Ā}), all variables corresponding to jobs
in one set appear negated, all variables corresponding to the other set appear
non-negated. Note that CS({A, Ā}) has the same truth table as CS({Ā, A})
(namely, a clause is false if and only if all its literals are false, or all its literals
are true). Note that this means that if A is assigned to the first machine and Ā is
assigned to the second machine, then all clauses except CS({A, Ā}) are satisfied.

Denote by wS({A, Ā}) the weight on the clause CS({A, Ā}). To ensure the
weight of the satisfied clauses is equal to the weight of the least loaded machine
in SM2, we define weights on the clauses to be so that

∑

B,B̄:B∪B̄=S,B∩B̄=∅
wS({B, B̄})− wS({A, Ā}) = min{p(A), p(Ā)}.

Let N = 2r−1, i.e., N is the number of clauses corresponding to scenario S. The
solution to this system of equations is to set

wS({A, Ā}) = 1

N − 1

∑

B,B̄:B∪B̄=S,B∩B̄=∅
min{p(B), p(B̄)} −min{p(A), p(Ā)}.

The weights thus defined are not necessarily non-negative: consider a scenario
S that contains r = 4 jobs of unit length. There are four ways of partitioning S
into one set of size one and one set of size three, and there are

(
4
2

)
/2 = 3 ways of

partitioning S into two sets of size two. Therefore
∑

B,B̄ min{p(B), p(B̄)} = 10,

but that means that for a partitioning into sets A, Ā of size two wS({A, Ā}) =
1
7 (10)− 2 < 0.

To use approximation algorithms for Max-Nae Sat, we need to make sure
that all weights are non-negative. We accomplish this by adding a constantK(S)
to all weights of clauses corresponding to scenario S, where we set −K(S) equal
to a lower bound on the weights. We derive a lower bound on the weights by not-
ing that (1) 1

N

∑
B,B̄ min{p(B), p(B̄)} is the expected value of the least loaded

machine when all jobs are assigned to a machine with probability 1
2 indepen-

dently, hence, by Lemma 1, its value is lower bounded by 1
2 maxB,B̄ min{p(B),

p(B̄)}; and (2) trivially, maxB,B̄ min{p(B), p(B̄)} ≤ 1
2p(S). Therefore
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wS({A, Ā}) = 1
N−1

∑

B,B̄:B∪B̄=S,B∩B̄=∅
min{p(B), p(B̄)} −min{p(A), p(Ā)}

= N
N−1

1
N

∑

B,B̄:B∪B̄=S,B∩B̄=∅
min{p(B), p(B̄)} −min{p(A), p(Ā)}

≥ N
N−1

1
2 max

B,B̄
min{p(B), p(B̄)} −min{p(A), p(Ā)}

≥
1
2N−(N−1)

N−1 max
B,B̄

min{p(B), p(B̄)}

= − 1
2
N−2
N−1 max

B,B̄
min{p(B), p(B̄)}

≥ − 1
4
N−2
N−1p(S).

Thus, we set K(S) = 1
4
N−2
N−1p(S), such that w̃S({A, Ā}) = wS({A, Ā})+K(S) ≥

0 for all partitionings A, Ā of S into two sets.
A solution to the Max-Nae Sat instance is now mapped to a solution of

SM2, by assigning the jobs for which the variable is set to true to machine 1,
and scheduling the other jobs on machine 2. We note that the w-weights of
the clauses corresponding to scenario S were chosen so that the sum of the
weights of the clauses that are satisfied is exactly equal to the load on the least
loaded machine in scenario S. Also, N − 1 clauses of scenario S are satisfied
in any solution to the Max-Nae Sat instance. Therefore the total w̃-weight of
the clauses for scenario S that are satisfied in any Max-Nae Sat solution is
equal to the load on the least loaded machine in scenario S plus an additional
(N − 1)K(S).

We let L =
∑

S p(S), and denote by L∗
min the sum over all scenarios of the

load of the least loaded machine in an optimal solution, and by L∗
max the sum

over all scenarios of the load of the most loaded machine in an optimal solution,
so that L∗

min + L∗
max = L. Note that the additional term K(S) in the w̃-weights

of the Max-Nae Sat solution causes an increase of the objective value with
respect to the w-weights solution by adding an additional

∑
S(N − 1)K(S) =∑

S
1
4 (N − 2)p(S) = 1

4 (N − 2)L to each solution.
In particular, an optimal solution to the Max-Nae Sat instance, has objec-

tive value L∗
min + 1

4 (N − 2)L, and a (1 − γ)-approximation algorithm for the
Max-Nae Sat instance, therefore, has objective value at least (1 − γ)(L∗

min +
1
4 (N − 2)L). Let us denote by ALG(Lmin) and ALG(Lmax) the sum over all
scenarios of the least and most loaded machines in the corresponding job as-
signment. Note that ALG(Lmin) ≥ (1− γ)

(
(L∗

min +
1
4 (N − 2)L

)− 1
4 (N − 2)L =

(1− γ)L∗
min − 1

4γ(N − 2)L. Therefore,

ALG(Lmax) = L−ALG(Lmin) ≤ L− ((1 − γ)L∗
min − 1

4γ(N − 2)L)

= (1− γ)(L− L∗
min) + γL+ 1

4γ(N − 2)L

= (1− γ)L∗
max +

1
4γ(N + 2)L.

Noting that L ≤ 2L∗
max gives ALG(Lmax) ≤ (1 − γ)L∗

max +
1
2γ(N + 2)L∗

max =
(1 + 1

2γN)L∗
max which proves the theorem, since N = 2r−1. 	
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For r = 3, Zwick [18] gives a 0.90871-approximation for Max-Nae 3-Sat. By
the previous lemma, this gives a 1.18258-approximation for SM2 with scenarios
of length at most three. For r = 4, Karloff et al. [14] give a 7

8 -approximation
for Max-NAE 4-Sat. By our lemma, this implies a 3

2 -approximation for SM2
with scenarios of size 4. Note that this matches the guarantee we proved for
the algorithm that randomly assigns each job to one of the two machines. For
general r, the best approximation factor known forMax-Nae Sat is 0.74996 due
to Zhang, et al. [17], and the implied approximation guarantees for our problem
are worse than the guarantee for the random assignment.

If every scenario has exactly two jobs, then we can obtain a better approxi-
mation guarantee by reducing SM2 to Max Cut as follows: we create a vertex
for every job, and add an edge between i and j of weight min{pi, pj} for every
scenario that contains jobs i and j. For any cut, the weight of the edges crossing
the cut is then exactly the sum over all scenarios of the load of the least loaded
machine. Since the makespan for a scenario S is p(S) minus the load of the least
loaded machine, maximizing the load of the least loaded machine, summed over
all scenarios, is equivalent to minimizing the sum of the makespans.

If every scenario has at most three jobs, we can also reduce SM2 to Max

Cut, but the reduction, given in the full version [8], is slightly more involved.

Theorem 8. There exists a (1+ γ)-approximation algorithm for the SM2 prob-
lem with scenarios containing at most three jobs, where 1 − γ is equal to the
approximation ratio for Max Cut.

The 0.87856-approximation for Max Cut of Goemans et al. [10] gives us the
following corollary.

Corollary 1. There exists a 1.12144-approximation algorithm for the SM2 prob-
lem with scenarios containing at most three jobs.

4 Epilogue

This paper presents some first results on a basic scheduling problem under a set
of scenarios. The objective is to find a single solution that is applied to all the
scenarios specified. We studied this problem for scheduling with two different
objectives: minimizing the maximum objective value over all scenarios, the Min-
Max version, and minimizing the sum of the objective values of all scenarios, the
MinSum version.

To the best of our knowledge, combinatorial optimization problems under a
set of fully explicitly specified scenarios has hardly been studied in the literature.
Apart from posing theoretically interesting questions as we hope to have shown
with this paper, it enhances our ability to model decisions problems where a
learning aspect for performing jobs prohibits that job assignments can be ad-
justed on a day-by-day basis, but merely require a fixed assignment whose quality
then necessarily differs over the various instances.

In relation to the MinMax version of the problem, we also like to mention
a version of combinatorial optimization which has become known under the
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name universal optimization. E.g., [7] study a universal scheduling problem. In
such a problem, the scenarios are not explicitly specified, but can be seen to
be chosen by an adversary. The quality of an algorithm is then measured by
comparing its solution to the optimal solution when the adversarial choices are
known beforehand.

For future research, anyone can choose her or his favorite combinatorial opti-
mization problem and study its multiple-scenario version.

We finish with the some questions emerging from our multiple-scenario schedul-
ing problem. The result in [2] suggests a 3/2-approximation for MM2 with 4 jobs
per scenario and unitary jobs. Can this be extended to any job sizes? For the
SM2 version the question is to close the gap between the 3/2-approximate ran-
domized algorithm for the general case and the 1.0404 lower bound under the
Unique Games Conjecture. It would also be interesting to find out if our ran-
domized algorithm can be derandomized.
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