

Lift-and-Round to improve weighted completion time on
unrelated machines
Citation for published version (APA):
Bansal, N., Srinivasan, A., & Svensson, O. (2015). Lift-and-Round to improve weighted completion time on
unrelated machines. arXiv, Article 1511.07826. https://arxiv.org/abs/1511.07826

Document status and date:
Published: 24/11/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://arxiv.org/abs/1511.07826
https://research.tue.nl/en/publications/f0adbf15-f1ac-4e5f-8cd5-9e5d7be82d62

ar
X

iv
:1

51
1.

07
82

6v
2

 [c
s.

D
S

]
1

D
ec

 2
01

5

Lift-and-Round to Improve Weighted Completion Time on
Unrelated Machines

Nikhil Bansal∗ Aravind Srinivasan† Ola Svensson‡

December 2, 2015

Abstract

We consider the problem of scheduling jobs on unrelated machines so as to minimize the sum of
weighted completion times. Our main result is a(3/2 − c)-approximation algorithm for some fixed
c > 0, improving upon the long-standing bound of 3/2 (independently due to Skutella,Journal of the
ACM, 2001, and Sethuraman & Squillante,SODA, 1999). To do this, we first introduce a new lift-and-
project based SDP relaxation for the problem. This is necessary as the previous convex programming
relaxations have an integrality gap of3/2. Second, we give a new general bipartite-rounding procedure
that produces an assignment with certain strong negative correlation properties.

Keywords: Approximation algorithms, semidefinite programming, scheduling

1 Introduction

We consider the classic problem of scheduling jobs on unrelated machines to minimize the sum of weighted
completion times. Formally, a problem instance consists ofa setJ = {1, 2, . . . , n} of n jobs and a setM
of m machines; each jobj ∈ J has a weightwj ≥ 0 and it requires a processing time ofpij ≥ 0 if assigned
to machinei ∈ M . The goal is to find a schedule that minimizes the weighted completion time, that is
∑

j∈J wjCj , whereCj denotes the completion time of jobj in the schedule constructed.
Total completion time and related metrics such as makespan and flow time, are some of the most relevant

and well-studied measures of quality of service in scheduling and resource allocation problems. While total
completion time has been studied since the 50’s [32], a systematic study of its approximability was started
in the late 90’s by [25]. This led to a lot of activity and progress on the problem in various scheduling
models and settings (such as with or without release dates, preemptions, precedences, online arrivals etc.). In
particular, we have now a complete understanding of the approximability insimplermachine models, such as
identical and related machines. For these settings, non-trivial approximation schemes were developed more
than a decade ago, e.g., in [1, 31, 9]. The more general unrelated machine model behaves very differently
and is significantly more challenging. Perhaps because of this, its study has led to the development of many
new techniques, such as interesting LP and convex programming formulations and rounding techniques [25,
11, 16, 26, 15, 30] (see also the survey by Chekuri and Khanna [10]).

∗Department of Mathematics and Computer Science, TU Eindhoven, Netherlands. Email: n.bansal@tue.nl. Supported by NWO
Vidi grant 639.022.211 and ERC consolidator grant 617951.

†Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, USA. Email:
srin@cs.umd.edu. Supported in part by NSF Awards CNS-1010789 and CCF-1422569, and a research award from Adobe, Inc.

‡School of Computer and Communication Sciences, EPFL, Switzerland. Email: ola.svensson@epfl.ch. Supported by ERC
Starting Grant 335288-OptApprox.

1

http://arxiv.org/abs/1511.07826v2
mailto:n.bansal@tue.nl
mailto:srin@cs.umd.edu
mailto:ola.svensson@epfl.ch

a b

1 2 3 4

groups ofa groups ofb

1 2 3 4

Figure 1: A simple example motivating the novel rounding algorithm with strong negative correlation.

In spite of these impressive developments, it remains a notorious problem to understand the approxima-
bility of total weighted completion time in the unrelated machines setting. On the positive side, Schulz and
Skutella [26] gave a(3/2 + ǫ)-approximation based on a time-indexed LP formulation, improving upon the
previous works of [24, 17]. Another3/2-approximation was obtained by Skutella [30] and independently
by Sethuraman and Squillante [28] based on a novel convex-programming relaxation. On the other hand,
Hoogeveen et al. [18] showed that the problem is APX-hard, but the hardness factor was very close to1.
The natural question of whether a(3/2 − c)-approximation exists for the problem for somec > 0 has been
proposed widely [10, 26, 20, 34, 27]. In particular, it appears asOpen Problem 8in the well-known list [27]
due to Schuurman and Woeginger of the “top ten” problems in scheduling. Moreover, Srividenko and Wiese
conjectured [34] that the configuration LP for this problem has an integrality gap that is strictly less than3/2.
The unrelated machines setting is one of the most general andversatile scheduling models that incorporates
the heterogeneity of jobs and machines. But besides the practical motivation, an important reason for interest
in the problem is that historically, the exploration of various scheduling problems in the unrelated machines
model has been a rich source of several new algorithmic techniques [22, 33, 7, 8, 5, 4, 13, 23, 21, 6].

Our Results: Our main result is such an improved algorithm. In particular, we show the following.

Theorem 1.1. There is a(3/2 − c)-approximation algorithm for minimizing the total weighted completion
time on unrelated machines, for somec ≥ 10−7.

Remark: We do not try to optimize the constantc too much, preferring instead to keep the exposition as
simple as possible. However, it does not seem likely that ouranalysis would yieldc < 10−2.

The result is based on two key ideas: (i) a novel SDP relaxation for the problem obtained by applying
one round of lift-and-project to the standard LP formulation and (ii) a new rounding algorithm to assign jobs
to machines that reduces the “correlation” between the various jobs assigned to a machine.

Stronger Formulation: The stronger formulation is necessary: we show that the convex programming
relaxation considered by [30, 28] has an integrality gap of3/2. Such families of instances do not seem to
have been previously known [29]; we describe them in Section2. In contrast, our stronger relaxation can be
used to derive new and tighter lower bounds on the optimum value, by exploiting the PSD constraint on the
underlying moment matrix.

We remark that the lower bounds we use to prove Theorem 1.1 canalso be obtained using the configu-
ration LP proposed by [34], which confirms their conjecture that the integrality gap of the configuration LP
is also upper bounded by(3/2 − c). However, we find the SDP formulation more natural as it is explicitly
reveals the correlation information that we use.

The Rounding Algorithm: The solution to the SDP gives a fractional assignment of jobsto machines,
which we need to convert to an integral assignment. Interestingly, all the previous algorithms [26, 30, 28]
are based on applying standard (i.e., independent across jobs) randomized rounding to the fractional solution
to find an assignment of jobs to machines. However, a very simple example (in Section 2) shows that no

2

such “independentrandomized rounding” based algorithm can give a3/2−Ω(1) guarantee, irrespective of
the underlying convex relaxation. The problem is that the variance can be too high.

To get around this, we need to introduce somestrongnegative correlation among pairs of jobs assigned
to any machinei (i.e., the ratio of the probability that they are both scheduled oni to the product of their
respective probabilities of assigment oni, should be1−Ω(1)). For intuition, consider the example depicted
on the left in Figure 1: we have a set{1, 2, 3, 4} of four jobs, two machinesa, b, and the SDP assigns each
job fractionally 1/2 to both machines. Note that independent randomized rounding would assign any two
jobs j andj′ to machinea (and similarly tob) with probability 1/4. Ideally, we would like to have strong
negative correlation that decreases this probability for all pairs of jobs. Unfortunately, this is not possible in
general as can be seen by takingn ≫ 1 jobs instead of4 in the considered example1. However, one can still
hope for a randomized rounding with strong negative correlation for some of the jobs while maintaining that
no two jobs are assigned to a single machine with probabilitymore than1/4. This is what our randomized
rounding algorithm achieves.

The pairs of jobs that will have strong negative correlationare decided by a grouping scheme: for each
machinei, the jobs are partitioned into groups with total fractionalassignment oni being at most1. The
jobs in the same group are those that will have strong negative correlation. This step is illustrated on the
right of Figure 1. Machinea has two groups consisting of jobs{1, 3} and{2, 4} and machineb has two
groups consisting of jobs{1, 2} and{3, 4}. Viewing this as a bipartite graph with group and job vertices, we
would like to find an assignment with strong negative correlation on the edges incident to the same group.
This is reminiscent of the several randomized pipage-basedschemes [2, 3, 12, 14, 19] that given a fractional
matching produce an integral matching. In fact, these get perfect negative correlation between edges at a
vertex as only one edge is picked at any vertex2.

However, these techniques do not work in our setting of general assignments due to a somewhat subtle
issue; trying to force strong negative correlation betweentwo edges in a group of a machine can cause
unexpected positive correlations among other edges of thatmachine. In particular, in our example, previous
rounding techniques would output one of the two perfect matchings with equal probability (the two perfect
matchings are indicated by dashed and solid edges in the right of Figure 1) – thus yielding perfectpositive
correlation, e.g., for jobs1 and4 being assigned to machinea.

To get around this we give a new rounding theorem. The main idea behind the algorithm is to update the
fractional assignment using randomized pipage steps alongcarefully chosen paths of length 4. In particular,
these paths are chosen based on a random 2-coloring of the edges where the coloring is based on the frac-
tional assignment and evolves over time. The properties of this general rounding technique are summarized
in the theorem below. We believe that this technique can be ofindependent interest, as it appears to be
the first to obtainstrongnegative correlations. Indeed, our rounding maintains thedesired properties from
independent randomized rounding (properties (a), (b), andthe second part of (c) of Theorem 1.2) while also
achieving a guaranteed amount of pairwise negative – i.e., strong – correlation (the first part of (c)). This is
key for our result, and we are not aware of any prior work in this vein.

Theorem 1.2. Let ζ = 1/108. Consider a bipartite graphG = (U ∪ V,E) and lety ∈ [0, 1]E be fractional
values on the edges satisfyingy(δ(v)) = 1 for all v ∈ V . For each vertexu ∈ U , select any family of disjoint

E
(1)
u , E

(2)
u , . . . , E

(κu)
u ⊆ δ(u) subsets of edges incident tou such thaty(E(ℓ)

u) ≤ 1 for ℓ = 1, . . . , κu. Then

1Any scheduleπ of n jobs on2 machines, must havePrj,j′ [π assignsj andj′ to the same machine] ≥ 1/2 − o(1). A simple
proof of this is as follows. Supposeπ assignss jobs to the first machine andt jobs to the second machine, wheres+ t = n. Then,
conditional on this, the desired probability is(

(

s

2

)

+
(

t

2

)

)/
(

n

2

)

which is minimized ats = t = n/2, and has value1/2−o(1). Now as
Eπ Prj,j′ [π assignsj andj′ to the same machine] = Ej,j′ Prπ[π assignsj andj′ to the same machine], we have that there exist
two jobsj andj′ that are assigned to the same machine with probability at least1/2−o(1) (and thus to one of them with probability
at least1/4 − o(1)) no matter which algorithm, i.e., distribution over schedulesπ, that is used.

2Although they can introduce positive correlation between non-adjacent edges.

3

there exists a randomized polynomial-time algorithm that outputs a random subset of the edgesE∗ ⊆ E
satisfying

(a) For everyv ∈ V , we have|E∗ ∩ δ(v)| = 1 with probability1;

(b) For everye ∈ E, Pr[e ∈ E∗] = ye;

(c) For everyu ∈ U and all e 6= e′ ∈ δ(u),

Pr[e ∈ E∗ ∧ e′ ∈ E∗] ≤
{

(1− ζ) · yeye′ if e, e′ ∈ E
(ℓ)
u for someℓ ∈ {1, 2, . . . , κu},

yeye′ otherwise.

In the above theorem, we use the standard notationδ(w) = {e ∈ E : w ∈ e} to denote the set of edges
incident to a vertexw, and lety(F) =

∑

e∈F ye for any subsetF ⊆ E of edges.

2 Preliminaries and Lower Bounds

On a single machine, the weighted completion is minimized byordering the jobs in non-increasing order of
wj/pj, referred to as the Smith ordering. In the unrelated machines setting, for each machinei let�i denote
the Smith ordering of jobs on machinei (i.e. j′ �i j iff wj′/pij′ ≥ wj/pij). Given an assignment of jobs to
machines, the total weighted completion time is simply

∑

i

∑

j∈J(i)

wjpij(
∑

j′�ij

pij′)

whereJ(i) denotes the set of jobs assigned to machinei.
For eachi ∈ M andj ∈ J , consider a binary variablexij that should take value1 if and only if job j is

assigned to machinei. Then the exact quadratic program can be formulated as follows:

Minimize
∑

i∈M

∑

j∈J

wjxij




∑

j′∈J :j′�ij

pij′xij′



(QP)

subject to
∑

i∈M

xij = 1 for all j ∈ J,

x ∈ {0, 1}M×N .

The Convex Programming relaxation of [30, 28]: We only describe the relaxation of [30, 28] here and
refer to [30] for details on how it is obtained. They relax thevariablesxij in (QP) above to be fractional in
[0, 1], together with the fact thatx2ij = xij for an integral solution and thatcTx :=

∑

i

∑

j wjpijxij is a
lower bound on any solution to obtain the following convex relaxation:

Minimize z(CP)

subject to z ≥ 1

2
cTx+

1

2
xTDx

z ≥ cTx
∑

i∈M

xij = 1 for all j ∈ J,

x ∈ [0, 1]M×N .

4

wherexTDx :=
∑

i(
∑

j wj(
∑

j′≺ij
2pij′xij′ + pijxij)xij) can be shown to be a convex function. We will

refer tocTx andxTDx as the linear and quadratic terms respectively.

A 3/2 integrality gap instance for CP: Consider the following instance. There arek+1 jobs, all of weight
1. The firstk jobs are of size (processing time)1 each and can only be placed on machine1 (i.e., have
infinite size on other machines). Jobk + 1 has sizek2 and can be placed on any machine2, . . . ,m, where
we letm = k + 1.

Claim 2.1. The above instance has an integrality gap3/2 −O(1/k) for (CP).

Proof. First observe that any integral solution has value greater than(3/2)k2 as the total completion time
of the firstk jobs isk(k + 1)/2 while the last job has a completion time ofk2.

Now, consider the fractional solution where each job1, . . . , k is assigned to extent1 on machine1, and
job k + 1 is assigned to each machinei for i = 2, . . . ,m, to an extent of1/(m − 1) = 1/k. We will show
that this solution has fractional value at mostk2 + k.

First, the linear termcTx is k + k2 (k for the firstk jobs andk2 for the big job). Second, the quadratic
term is

xTDx =
k∑

j=1

(2(j − 1) + 1) +
m∑

i=2

k2

(m− 1)2
= k2 +

k2

m− 1
= k2 + k.

In particular, the firstk jobs contributek2 above, and for the last job each of them−1 machines contributes
k2/(m− 1)2. Thus (CP) has objective value at mostk2 + k.

Note that in this example, the problem is that both the linearand quadratic bounds are weak on the
overall instance. In particular, while the linear bound is exact on the big job, it is very weak on the small
jobs. On the other hand, the quadratic term is exact on the small jobs, but very weak on the big job.

Limitation of Independent Randomized Rounding based approaches: The previous-best approximation
algorithms are based on standard (i.e.,independentacross jobs) randomized rounding. We show that no such
rounding can beat the approximation guarantee of3/2, irrespective of the relaxation. Consider the (trivial)
instance withm jobs each of which can be placed on any of them machines, and withwj = pij = 1 for all
i, j. The fractional solutionxij = 1/m for all i, j ∈ [m] is a valid solution for any relaxation (as it is can
be expressed as a convex combination ofm perfect matchings). Clearly, the optimal solution assignsone
job to each machine and has valuem. However, under independent randomized rounding, for largem, the
number of jobs assigned to a machine approaches a Poisson distribution with mean1 and so the probability
that a machine getsk jobs is≈ 1/(e · k!). The expected completion time on any machine is thus

≈
∞∑

k=0

k(k + 1)

2
· 1

ek!

which is3/2 as the first and second moments of Poisson(1) are1 and2 respectively.

The need for negative correlation in different classes: The above example might suggest that randomized
rounding performs poorly only when the total mass (

∑

j xij) on a machinei is close to1, as intuitively
the effect of the variance should be relatively small if there are many jobs. This intuition is indeed true if
the jobs are similar to each other in terms of size (processing time) and weight. However, the following
example shows that some more care is needed if the jobs are very dissimilar. Suppose there areℓ job classes
k = 1, . . . , ℓ, where a classk job has weightMk and sizeM−k for some largeM , and that machinei
hasm jobs from each class, withxij = 1/m for all jobs j. So the total fractional assignment of jobs to
i is ℓ. Now, as the Smith ratios are very different, the jobs from different classes have negligible effect on
each other: only the individual cost of each class matters, and the fractional cost is≈ ∑ℓ

k=1M
kM−k = ℓ.

5

Now, if we round each job independently, the expected cost is3ℓ/2, and it is not hard to see that to get a
((3/2) − c)–approximation, we need to get a non-trivial negative correlation in at leastΩ(c) fraction of the
classes.

It turns out that this example is in a sense the worst possible; it motivates our rounding procedure in
Section 5. Roughly speaking, it suffices to partition the jobs in different classes so that the total fractional
weight is about1, and then try to get some strong negative correlation withinjobs of each class.

3 Strong Convex Relaxation

In this section, we give a strong convex relaxation based on the paradigm of “systematically” relaxing the
exact quadratic mathematical program (QP) to a tractable convex program. In particular, our relaxation
can be obtained “automatically” using the Lasserre/Sum-of-Squares hierarchy (although we have chosen to
write this section in a self-contained manner).

To obtain a convex relaxation of (QP), we linearize it by replacing each quadratic termxij · xij′ by
a new variablex{ij,ij′} with the exception thatxij · xij is replaced by the existing variablexij (since in
any binary solutionx2ij = xij). For notational convenience, we also refer to variablexij asx{ij} and
we introduce an auxiliary variablex∅ and setx∅ = 1. The set of variables of our relaxation is thus
{x∅} ∪ {x{ij}∪{ij′}}i∈M,j,j′∈J . Clearly any intended solution satisfies that

∑

i∈M xij = 1 and thatx is
non-negative. Another family of valid constraints is as follows. For a machinei ∈ M , let X(i) be the
(n + 1) × (n + 1) matrix whose rows and columns are indexed by∅ and{ij}j∈J . The entries ofX(i)

are defined byX(i)
S,T = xS∪T . In particular, this implies thatX(i)

∅,{ij} = X
(i)
{ij},{ij} = xij (that we will use

crucially). We impose the constraint thatX(i) � 0. These are valid constraints: indeed, ifX(i) corresponds
to an integral assignmentx then

X(i) = zzT � 0 where z = (1, xi1, · · · , xin)T

andX(i)
{ij},{ij}

= (zzT)ij,ij = xijxij = xij = X
(i)
∅,{ij}

.

The above yields the following convex (semidefinite programming) relaxation of our problem:

minimize
∑

i∈M

∑

j∈J

wj




∑

j′∈J :j′�ij

pij′x{ij}∪{ij′}



(SDP)

subject to
∑

i∈M

xij = 1 for all j ∈ J,

X(i) � 0 for all i ∈ M,

x∅ = 1,

X
(i)
S,T ≥ 0 for all i ∈ M andS, T ⊂ J with |S|, |T | ≤ 1.

3.1 Lower bounds on the objective value

We briefly sketch why this SDP is stronger; e.g., it is exact onthe3/2 integrality gap instance from Section
2.

Similar to previous works, our analysis reduces to that of fixing a single machinei and analyzing the cost
of that machine: we compare the contribution of that machineto the objective of (SDP) to the (expected)
cost of that machine in the schedule returned by our (randomized) algorithm. To do so, it will be important

6

to understand machinei’s contribution to the objective when a job’s processing time equals its weight, i.e.,
pij = wj for j ∈ J . In this case,

∑

j∈J

wj




∑

j′∈J :j′�ij

pij′x{ij}∪{ij′}



 =
n∑

j=1

pij(pi1x{ij}∪{i1} + · · ·+ pijx{ij}∪{ij}),

where we numbered the jobs according to the Smith ordering onmachinei.
Interestingly, we can lower-bound this quantity is variousways as shown in the following lemma. The

proof of this lemma crucially uses the SDP constraints and isdeferred to the analysis of our approximation
guarantee (see Lemma 5.4).

Lemma 3.1. For any subsetS ⊆ {1, . . . , n} of jobs,

n∑

j=1

pij(pi1x{ij}∪{i1} + · · · + pijx{ij}∪{ij}) ≥
∑

j 6∈S

xijp
2
ij +

1

2




∑

j∈S

xijp
2
ij +




∑

j∈S

xijpij





2

 .

In particular, we can choose the best setS that gives us the tightest combination of the linear and the
quadratic lower bounds. In contrast, the relaxations used in [30, 28] basically take the maximum lower
bound (averaged over the machines) obtained by either settingS = ∅ or S = J .

This flexibility in choosingS will be critical to our analysis. For the3/2 gap instance, recall that the
linear bound was tight for the large job, while the quadraticbound was tight for the small jobs, which makes
the SDP exact on that instance.

4 Bipartite Assignment with Strong Negative Correlation

As discussed in Section 2, independent randomized roundingcannot give a better approximation ratio than
3/2. To improve upon this ratio, we would ideally like to introduce strong negative correlation on jobs being
assigned to a machine of the following type: if a jobj is assigned to a machine, it should be less likely to
assign other jobs to that machine. While it is not always impossible to introduce such negative correlations
among all jobs, Theorem 1.2, which we prove in this section, shows that it is possible to introduce strong
negative correlation between subsets of jobs (or vertices)without introducing positive correlations at pairs
of edges with a common end-point. For convenience, we restate the theorem here.

Theorem 1.2. Let ζ = 1/108. Consider a bipartite graphG = (U ∪ V,E) and lety ∈ [0, 1]E be fractional
values on the edges satisfyingy(δ(v)) = 1 for all v ∈ V . For each vertexu ∈ U , select any family of disjoint

E
(1)
u , E

(2)
u , . . . , E

(κu)
u ⊆ δ(u) subsets of edges incident tou such thaty(E(ℓ)

u) ≤ 1 for ℓ = 1, . . . , κu. Then
there exists a randomized polynomial-time algorithm that outputs a random subset of the edgesE∗ ⊆ E
satisfying

(a) For everyv ∈ V , we have|E∗ ∩ δ(v)| = 1 with probability1;

(b) For everye ∈ E, Pr[e ∈ E∗] = ye;

(c) For everyu ∈ U and all e 6= e′ ∈ δ(u),

Pr[e ∈ E∗ ∧ e′ ∈ E∗] ≤
{

(1− ζ) · yeye′ if e, e′ ∈ E
(ℓ)
u for someℓ ∈ {1, 2, . . . , κu},

yeye′ otherwise.

We start by describing the randomized algorithm and then give its analysis.

Notation: Floating values. A valuez ∈ [0, 1] will be called “floating” if z ∈ (0, 1).

7

v1 v2

u1 u u2

Figure 2: Illustration of the update in phase 2. Solid edges are inR and either (i) thick edges are increased
by α and slim edges are decreased byα or (ii) slim edges are increased byβ and thick edges are decreased
by β. We note thatu1 may equalu2 but they both differ fromu.

4.1 Algorithm

We divide the algorithm into three phases and present each phase along with some simple observations that
will be useful in the analysis.

Phase 1 (Forming the collection R∗): Let y∗ denote the initial fractional assignment. For each vertex
v ∈ V , partition its incident edgesδ(v) into at most6 disjoint groups by letting each group –except possibly
for at most one group – be a minimal set of incident edges whosey∗-values sum up to at least1/6. (Note
that this results in at most6 groups sincey∗(δ(v)) = 1, and that these groups can be formed arbitrarily by
picking the edges inδ(v) greedily in non-increasing order ofy∗-value; the last group may havey∗-value
smaller than1/6.) Now select a random group, uniformly at random and independently for each vertexv,
and letR∗ be the set of selected edges.

Observation 4.1. Lete, e′ ∈ δ(u) for someu ∈ U . Then,Pr[(e ∈ R∗) ∧ (e′ ∈ R∗)] ≥ 1/36.

Proof. The events thate ∈ R∗ and thate′ ∈ R∗ are independent as they both are incident to different
vertices inV . Now the statement follows as eachv ∈ V selects a random group out of at most6 many.

Phase 2 (Updating the assignment): Initially let y = y∗, R = R∗. Repeat the following steps while there
exist edges{u, v1}, {u, v2} ∈ R∩E

(ℓ)
u for someℓ and{u1, v1} ∈ δ(v1) \R and{u2, v2} ∈ δ(v2) \R with

floatingy-value. Hereu, u1, u2 ∈ U , v1, v2 ∈ V , but are otherwise arbitrary. See Figure 2:

1. Letα = min{yu1,v1 , 1− yu,v1 , yu,v2 , 1− yu2,v2} andβ = min{1− yu1,v1 , yu,v1 , 1− yu,v2 , yu2,v2}.

2. With probability α
β+α

, updatey as follows for eache ∈ E:

ye =







ye + β if e = {u1, v1} or e = {u, v2},
ye − β if e = {u, v1} or e = {u2, v2},
ye otherwise.

Otherwise (with remaining probabilityβ
α+β

), updatey as follows for eache ∈ E:

ye =







ye − α if e = {u1, v1} or e = {u, v2},
ye + α if e = {u, v1} or e = {u2, v2},
ye otherwise.

8

3. Forv ∈ {v1, v2}, if
∑

e∈δ(v)∩R ye = 1, i.e. if all the edges incident tov are inR, then updateR as

R = (R \ δ(v)) ∪
{

arg max
e∈δ(v)∩R

ye

}

.

That is, remove all edges incident tov from R, except one with the largesty-value.

We note the following simple observations about this phase.

Observation 4.2. During Phase 2, if a variableye reaches0 or 1, then it is not updated anymore. Moreover,
at each iteration of Phase 2, at least one edge with floatingy-value has itsy-value reach0 or 1.

Proof. This follows from that Phase2 only updates floatingy-values and, in each iteration,α andβ is
selected so that one of the selected edges’y-value will reach0 or 1.

Observation 4.3. Phase2 satisfies the invariantsy(δ(v)) = 1 for everyv ∈ V andye ≥ 0 for everye ∈ E.

Proof. Notice that wheny is updated then the selection ofα andβ guarantees thatye ≥ 0 for everye ∈ E.
Moreover, the update is designed so that the fractional degree of a vertex inV stays constant. Thus the
statement follows since we start withy = y∗ for whichy(δ(v)) = 1 for v ∈ V .

Observation 4.4. The setR does not increase in size during Phase 2. Moreover, if an edgee ∈ δ(v) ∩R is
removed fromR (in Step 3) then it must be thaty(e) ≤ 1/2 after Step 2.

Proof. ThatR only decreases in size follows directly from Step 3. For the second part, if Step 3 is applied
at v andy(e) > 1/2 for somee ∈ δ(v), then as

∑

e′∈δ(v) y(e
′) = 1, it must be thate = argmaxe′∈δ(v) and

thuse remains inR.

Observation 4.5. When Phase2 terminates, then for everyu ∈ U and ℓ ∈ {1, . . . , κu}, we have|{e ∈
E

(ℓ)
u ∩R | ye > 0}| ≤ 1.

Proof. Suppose that there existe1, e2 ∈ E
(ℓ)
u ∩ R with ye1 , ye2 > 0. Then since any iteration of Phase2

maintains the value ofy(E(ℓ)
u ∩ R) andR ⊆ R∗ we havey(E(ℓ)

u ∩ R) ≤ y∗(E
(ℓ)
u ∩ R∗) ≤ 1. Hence,

ye1 , ye2 < 1. Now by Step3 of Phase2, we are guaranteed that a not-yet-integrally-assigned vertex v ∈ V
hasy(δ(v)∩R) < 1. Therefore, there exist edgese1 = {v1, u}, e2 = {v2, u} and{u1, v1} ∈ δ(v1) \R and
{u2, v2} ∈ δ(v2) \R with floatingy-values. This implies that Phase2 does not terminate in this case.

Phase 3 (Randomized Rounding): FormE∗ by, independently for each vertexv ∈ V , selecting a single
edgee ∈ δ(v) so thate ∈ δ(v) is selected with probabilityye. Notice that this is possible because, by
Observation 4.3, we have

∑

e∈δ(v) ye = 1 for all v ∈ V andye ≥ 0 for all e ∈ E.

4.2 Analysis

We first note that the algorithm terminates in polynomial time. Phase1 and Phase3 both clearly run in
polynomial time. Each step of Phase2 runs in polynomial time and by Observation 4.2, Phase2 runs in at
most|E| iterations.

We continue to analyze the properties. The intuition for whythey should hold is as follows. The algo-
rithm is inspired by randomized-rounding algorithms for bipartite matchings such as pipage rounding and
swap rounding. It is easy to see that these algorithms satisfy both Property (a) and the marginal probabilities
(Property (b)): indeed,α andβ are defined in order to do so. Moreover, the weak bound of Property (c) fol-
lows basically from the fact that, for eachu ∈ U , they-values of two edges incident tou are never increased

9

simultaneously. Finally, the intuition behind the novel strong bound of Property (c) is as follows. After
Phase2, the probability that two verticese, e′ ∈ E

(ℓ)
u are inR is at least1/36. Now using that the initial

y-value of edges inδ(v) ∩R is at most1/3 for everyv ∈ V , and that they-values of edges are preserved in
expectation, there is a reasonable probability that bothe, e′ will remain inR until the end. However, in that
case, it is easy to see by Observation 4.5 that at most one of them will be selected inE∗. We now continue
to formally prove these properties.

Property (a): That Property (a) of Theorem 1.2 holds follows from Observation 4.3 and as Phase3 chooses
exactly one edge incident to eachv ∈ V .

Properties (b) and (c): To show these properties, we will inductively show some invariants. LetY (k) =

(y
(k)
e : e ∈ E) denote the collection ofy-values of edges andR(k) be the setR at the end of iterationk of

Phase 2. For an edgee = {u, v} ∈ R with u ∈ U andv ∈ V letRē = {e′ ∈ δ(v)∩R : e′ 6= e} be the other
edges inR incident tov.

We show the following invariants hold after each iterationk. Here, conditioning an event onY (k) and
R(k) means the probability of that event if the random iterationsin Phase 2 are applied starting from the
assignmentY (k) andR = R(k).

Pr[e ∈ E∗
∣
∣ Y (k), R(k)] = y(k)e ∀e ∈ E (1)

Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣
∣ Y (k), R(k)] ≤ y(k)e y

(k)
e′ ∀u ∈ U, e, e′ ∈ δ(u) (2)

Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣
∣ Y (k), R(k)] ≤ 2(y(k)(R

(k)
ē) + y(k)(R

(k)
ē′))y(k)e y

(k)
e′ (3)

∀u ∈ U, ℓ ∈ {1, . . . , κu}, e 6= e′ ∈ E(ℓ)
u ∩R(k)

To show these, we will apply reverse induction. For the base case, we show that these properties hold
after the last iteration of Phase 2. For the inductive step, we show that if they hold after thek-th iteration
then they also hold after iterationk− 1 (or equivalently at the beginning of iterationk), and hence they also
hold for they-values andR at the beginning of Phase 2.

Let us first see how this implies the theorem.
At the beginning of Phase2 we havey(0) = y∗ andR(0) = R∗. So having (1) fork = 0, implies

Property (b) and (2) implies the weaker bound in Property (c). For the stronger bound, consider two edges
e 6= e′ ∈ E

(ℓ)
u . By (3) above, we have that

Pr[e ∈ E∗ ∧ e′ ∈ E∗] = ER∗ [Pr[(e ∈ E∗ ∧ e′ ∈ E∗)
∣
∣ Y ∗, R∗]]

≤ Pr[e, e′ ∈ R∗] · 2(y∗(Rē) + y∗(Rē′))y
∗
ey

∗
e′ + (1− Pr[e, e′ ∈ R∗]) · y∗ey∗e′

≤ Pr[e, e′ ∈ R∗]
2y∗ey

∗
e′

3
+ (1− Pr[e, e′ ∈ R∗])y∗ey

∗
e′

≤ 2y∗ey
∗
e′

3 · 36 +
35

36
y∗ey

∗
e′

=
107

108
y∗ey

∗
e′ .

The second inequality follows from the fact thaty∗(Rē), y
∗(Rē′) ≤ 1/6 becausee, e′ ∈ R and after Phase1

R∩ δ(v) is aminimalgroup withy∗-value at least1/6 for eachv ∈ V ; and the third inequality follows from
Observation 4.1.

It thus remains to prove (1)-(3) by reverse induction on the iterations in Phase 2. One subtle point in the
argument is that the setR might also change (reduce in size) after an iteration.

Base case (when Phase 2 terminates): In this case Phase2 will not change any of they-values. As
each vertexv ∈ V picks an edge inδ(v) randomly with probabilityye, Pr[e ∈ E∗] = ye for every

10

e ∈ E, so (1) is satisfied. Similarly for (2), we note that for two edgese 6= e′ ∈ δ(u), it holds that
Pr[e ∈ E∗ ∧ e′ ∈ E∗] = yeye′ .

Finally, Observation 4.5 says that the number of edges inE
(ℓ)
u ∩ R with positivey-value is at most1.

Therefore, we have thatPr[e ∈ E∗ ∧ e′ ∈ E∗] = 0 for e 6= e′ ∈ E
(ℓ)
u ∩R and (3) holds trivially.

Inductive step: Assuming (1)-(3) holds at the end of iterationk, we prove that they hold at the end of
iterationk − 1).

For notational ease, let us denoteY = Y (k−1), R = R(k−1) and letY ′ = Y k andR′ = R(k) denote the
(random) updatedy-values and setR.

We first verify (1). By the inductive hypothesis (I.H.) we have thatPr[e ∈ E∗
∣
∣ Y ′] = y′e. So,

Pr[e ∈ E∗
∣
∣ Y] = EY ′|Y [Pr[e ∈ E∗

∣
∣ Y ′]], which isEY ′|Y [y

′
e]. If Phase2 did not update the value of edge

e then clearlyy′e = ye. Otherwise, we haveEY ′|Y [y
′
e] =

α
α+β

(ye+β)+ β
α+β

(ye−α) = ye. Thus, (1) holds
in either case.

Similarly, we show (2). By the I.H.,Pr[e ∈ E∗ ∧ e′ ∈ E∗|Y ′] ≤ y′ey
′
e′ and thus

Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣
∣ Y] = EY ′|Y [Pr[e ∈ E∗ ∧ e′ ∈ E∗

∣
∣ Y ′] ≤ EY ′|Y [y

′
ey

′
e′].

On the one hand, if Phase2 only changed they-value for at most one ofe ande′, then by independence this
is at mostEY ′|Y [y

′
e]EY ′|Y [y

′
e′] = yeye′ . On the other hand, if it changed both of the values then we have

EY ′|Y [y
′
ey

′
e′] =

α

α+ β
(ye + β)(ye′ − β) +

β

α+ β
(ye − α)(ye′ + α) ≤ yeye′ .

Indeed, if Phase2 changes the value of two edges incident to a vertex inU then it always increases the value
of one edge and decreases the value of the other edge. We have thus that (2) is satisfied.

We finish the analysis by verifying (3). Considere 6= e′ ∈ E
(ℓ)
u ∩R for someu ∈ U andℓ ∈ {1, . . . , κu}.

We wish to show that

Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣
∣ Y] ≤ 2(y(Rē) + y(Rē′))yeye′ .

LetR′ be the setR after the single iteration of Phase2. As previously we will use that

Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣
∣ Y] = EY ′|Y [Pr[e ∈ E∗ ∧ e′ ∈ E∗

∣
∣ Y ′]

and the I.H., but we cannot do it directly as it might the case that even thoughe ande′ belong toR, they
may not belong toR′. So we condition the right hand side depending on whether this happens or not.

Supposee 6∈ R′. Then by Observation 4.4,y′(Rē) ≥ 1/2 and hence we have that2(y′(Rē) +
y′(Rē′))y

′
ey

′
e′ ≥ y′ey

′
e′ . By (2) we have that

Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣
∣ Y ′, R′] ≤ y′ey

′
e′ ,

this implies that (conditioned one 6∈ R′)

Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣
∣ Y ′, R′] ≤ 2(y′(Rē) + y′(Rē′))y

′
ey

′
e′ .

The same holds ife′ 6∈ R′.
Now if both e ande′ lie in R′ by the I.H. we know that

Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣
∣ Y ′, R′] ≤ 2(y′(R′

ē) + y′(R′
ē′))y

′
ey

′
e′ ≤ 2(y′(Rē) + y′(Rē′))y

′
ey

′
e′ ,

where the last inequality follows from Observation 4.4, i.e., from the fact thatR′ ⊆ R.

11

We have thus upper bounded all cases (irrespective of whether R′ containse ore′) by the same expression
and it suffices to show

EY ′|Y [2(y
′(Rē) + y′(Rē′))y

′
ey

′
e′] ≤ 2(y(Rē) + y(Rē′))yeye′

If neithere or e′ is changed by the iteration of Phase2, then

EY ′|Y [2(y
′(Rē) + y′(Rē′))y

′
ey

′
e′] = EY ′|Y [2(y

′(Rē) + y′(Rē′))]yeye′ = 2(y′(Rē) + y′(Rē′))yeye′ ,

where the second equality follows by linearity of expectation and (1).
Now suppose the iteration of Phase2 changes at least one ofe or e′. Then we claim thaty′(Rē) = y(Rē)

andy′(Rē′) = y(Rē′). To see this note that an iteration of Phase2 changes exactly two edges inR incident
to the same vertex inU and since, in this case, one of them is incident tou so must the other one. The
setsRē andRē′ only contain edges ofR that are not incident tou and are thus left unchanged in this case.
Hence,

EY ′|Y [2(y
′(Rē) + y′(Rē′))y

′
ey

′
e′] = 2(y(Rē) + y(Rē′))EY ′|Y [y

′
ey

′
e′]

≤ 2(y(Rē) + y(Rē′))yeye′ ,

where the last inequality follows from (2). We have thus alsoproved (3) which completes the proof.

5 Rounding the Fractional Schedule

We now describe our scheduling algorithm. The algorithm solves the SDP relaxation from Section 3, and
applies the bipartite rounding procedure from Section 4 to asuitably defined graph based on the SDP so-
lution. We will analyze this algorithm in Section 5.2, and inparticular show the following result which
directly implies Theorem 1.1.

Theorem 5.1. The expected cost of the rounding algorithm is at most(3/2− c) times the cost of the optimal
solution to the relaxation, wherec = ζ/20000 andζ is the constant in Theorem 1.2.

5.1 Description of Algorithm

Our rounding algorithm consists of defining groups (i.e., the familiesE(ℓ)
u) for each machine and then

applying Theorem 1.2. Specifically, letx denote an optimal solution to our relaxation. We shall interpret
the vectory = (xij)i∈M,j∈J as an fractional assignment of jobs to machines in the bipartite graphG =
(M ∪ J,E) whereE = {ij : yij > 0}. Notice, thaty(δ(j)) = 1 for eachj ∈ J andy ≥ 0. Thus,y satisfies
the assumptions of Theorem 1.2. It remains to partition the edges incident to the machines into groups. To
do this, we apply the following grouping procedure to each machine separately.

Grouping Procedure: For a fixed machinei we define the groups as follows:

1. Call a jobj of classk, if pij ∈ [10k−1, 10k). We assume (by scaling) thatpij ≥ 1 if pij 6= 0.

2. For each classk = 0, 1, 2, . . ., order the jobs in that class in non-increasing order of Smith’s ratio, i.e.,
wj/pij , and form groups as follows. If some jobj hasxij ≥ 1/10, it forms a separate group by itself
{j}. For the remaining jobs, greedily pick the jobs in classk so that their total fractionaly-value oni
first reaches at least1/10 and make it a group; and repeat until the remaining jobs of that class have
total fractional value less than1/10.

12

1/12 1/6 1/12 1/18 1/12 1/12

The jobs are ordered in non-increasing order of Smith’s ratio and the widths
of the depicted jobs show theiry-value on the considered machine.

The height of the jobs represent
their processing times which are all
in [10k−1, 10k) since we only con-
sider jobs of classk.

Figure 3: Example of the grouping procedure on a machinei for the jobs of classk. The different groups
are depicted in different colors; the job corresponding to the white rectangle is ungrouped.

By definition, the ungrouped jobs in each size classk have total fractional value less than1/10 on
machinei. Note also that several singleton groups could be interspersed between jobs of a single group. For
an example see Figure 3.

Let E(1)
i , . . . , E

(κi)
i denote the groups formed, over all the classes, for machinei. We now apply Theo-

rem 1.2 to the graphG = (M ∪ J,E) with U = M and the groupsE(1)
u , . . . , E

(κ(u))
u at the machineu ∈ U .

Observe that the conditions of the groups are satisfied, i.e., they are disjoint and the totaly-value is at most
1 in all of them. This gives an assignment of the jobs to machines and thus a schedule.

5.2 Analysis

To analyze the performance of the algorithm above, we proceed in several steps. We first define some
notation and make some observations that allow us to expressthe cost of the algorithm and the relaxation in
a more convenient form. In Section 5.2.2 we show how to upper bound the cost of the schedule produced by
the algorithm. In secton 5.2.3 we show how to derive various strong lower bounds from the SDP formulation,
and finally in Section 5.2.4 we show how to combine these results to obtain Theorem 5.1.

5.2.1 Notation

Let Xij denote the random indicator variable that takes value1 if the algorithm assigns jobj to machine
i. The expected value of the returned schedule of the algorithm can then be written as

∑

i∈M ALGi, where
ALGi denotes the expected cost of machinei, i.e.,

ALGi = E




∑

j∈J

Xijwj




∑

j′�j

Xij′pij′







 =
∑

j∈J

wj




∑

j′�j

pij′E[XijXij′]



 .

Similarly, the value of the optimal solutionx to the relaxation can be decomposed into a sum
∑

i∈M RELi
over the costs of the machines, where

RELi =
∑

j∈J

wj




∑

j′∈J :j′�j

pij′x{ij}∪{ij′}



 .

In order to prove Theorem 5.1, it is thus sufficient to show

ALGi ≤ (3/2 − c)RELi for all i ∈ M. (4)

13

To this end, we fix an arbitrary machinei ∈ M and use the following notation:

• For simplicity, we abbreviatepij by pj, xij by xj , x{ij}∪{ij′} by x{j}∪{j′}, andXij by Xj .

• We let βj = wj/pj denote Smith’s ratio of jobj ∈ J on machinei and rename the jobsJ =
{1, 2, . . . , n} so thatβ1 ≤ β2 ≤ · · · ≤ βn.

With this notation, we can rewriteRELi andALGi as follows.

Lemma 5.2. We have

ALGi =

n∑

j=1

(βj − βj+1)E





j
∑

j′=1

pj′Xj′(p1X1 + · · ·+ pj′Xj′)



 ,

RELi =
n∑

j=1

(βj − βj+1)





j
∑

j′=1

pj′(p1x{j′}∪{1} + · · ·+ pj′x{j′}∪{j′})



 ,

where for notational convenience we letβn+1 = 0.

Proof. We prove the first equality based on a telescoping sum argument. The second equality follows exactly
by the same arguments. Usingwj = βjpj we can rewrite

ALGi = E





n∑

j=1

wj





j
∑

j′=1

XjXj′pj′







 = E





n∑

j=1

βjpjXj





j
∑

j′=1

Xj′pj′







 .

We now claim that the right-hand side of this expression equals

n∑

j=1

(βj − βj+1)E





j
∑

j′=1

pj′Xj′(p1X1 + · · ·+ pj′Xj′)



 .

Consider any termpkXkpℓXℓ with k ≤ ℓ. This term appears inE
[
∑n

j=1 βjpjXj

(
∑j

j′=1Xj′pj′
)]

only

whenj′ = k andj = ℓ and has a coefficient ofβℓ. The same term appears in the expression
∑n

j=1(βj −
βj+1)E

[
∑j

j′=1 pj′Xj′(p1X1 + · · ·+ pj′Xj′)
]

whenj = ℓ, ℓ+1, . . . , nwith coefficients(βℓ−βℓ+1), (βℓ+1−
βℓ+2), . . . , (βn − βn+1). Thus, by telescoping, the coefficient in front ofpkXkpℓXℓ is againβℓ.

By combining the above lemma with (4), we have further reduced our task of proving Theorem 5.1 to
that of proving

E





n′
∑

j=1

pjXj(p1X1 + · · ·+ pjXj)



 ≤ (3/2 − c)





n′
∑

j=1

pj(p1x{j}∪{1} + · · · + pjx{j}∪{j})



 . (5)

for all n′ ∈ J . The rest of this section is devoted to proving this inequality for a fixedn′. We shall use the
following notation:

• Let G denote those jobs that are in the groups that only contain jobs from {1, . . . , n′}. Let G =
{1, . . . , n′}\G denote the “ungrouped” jobs. Note that, by the definition of the algorithm, specifically,
the grouping, we have that each job class has fractional value less than1/10 in G. Let G denote the
collection of these groups restricted to jobs{1, . . . , n′}.

14

• LetL =
∑n′

j=1 xjpj denote the “linear” sum and letQ =
∑n′

j=1 xjp
2
j denote the “quadratic” sum. We

also use the notationL andQ to denote the linear and quadratic sums when restricted to ungrouped
jobs, i.e.,L =

∑

j∈G xjpj andQ =
∑

j∈G xjp
2
j .

The proof of (5) is described over the following three subsections. In Section 5.2.2 we give an upper bound
on the left-hand-side (LHS) of (5); in Section 5.2.3 we give several lower bounds on the right-hand-side
(RHS) of (5); finally, in Section 5.2.4 we combine these bounds to prove (5).

5.2.2 Upper bound on the LHS of (5)

We give the following upper bound on the LHS of (5). The lemma essentially say that we have a “gain” of
O(ζ) for each grouped job, which follows from our negative correlation rounding.

Lemma 5.3. For Q,Q andL as defined above, we have

E





n′
∑

j=1

pjXj(p1X1 + · · ·+ pjXj)



 ≤ (1− ζ/200) ·Q+ ζ/200 ·Q+ 1/2 · L2.

Proof. Using thatX2
j = Xj and a simple recombination of the terms, we have that

E





n′
∑

j=1

pjXj(p1X1 + · · ·+ pjXj)



 = E




1

2

n′
∑

j=1

Xjp
2
j +

1

2





n′
∑

j=1

Xjpj





2



As our rounding satisfies the marginals, this can be simplified to 1
2

∑n′

j=1 xjp
2
j +

1
2E

[(
∑n′

j=1Xjpj

)2
]

. We

now upper bound the latter term.

E









n′
∑

j=1

Xjpj





2

 = E




∑

j,j′

XjXj′pjpj′



 = E




∑

j,j′:j 6=j′

XjXj′pjpj′



+ E




∑

j:j=j′

XjXj′pjpj′





≤




∑

j 6=j′

xjxj′pjpj′ − ζ
∑

G′∈G

∑

j 6=j′∈G

xjxj′pjpj′



+
∑

j

xjp
2
j (by Theorem 1.2 andE[X2

j] = E[Xj] = xj)

=
∑

j,j′

xjxj′pjpj′ +
∑

j

(xj − x2j)p
2
j − ζ

∑

G′∈G

∑

j 6=j′∈G′

xjxj′pjpj′

≤




∑

j

xjpj





2

+
∑

j

xjp
2
j − ζ

∑

G′∈G




∑

j∈G′

xjpj





2

(sinceζ ≤ 1).

Now, for each groupG′ ∈ G, we have
∑

j∈G′ xj ≥ 1/10 andpj ≥ pj′/10 for j, j′ ∈ G. Therefore,

(
∑

j∈G′

xjpj)
2 ≥

∑

j∈G′

xjp
2
j/100.

15

Thus, we have that the expected cost of the machine is upper bounded by





n′
∑

j=1

xjp
2
j



+
1

2









n′
∑

j=1

xjpj





2

−



ζ
∑

G′∈G

∑

j∈G′

xjp
2
j/100









=





n′
∑

j=1

xjp
2
j



+
1

2









n′
∑

j=1

xjpj





2

−



ζ
∑

j∈G

xjp
2
j/100









= (1− ζ/200)





n′
∑

j=1

xjp
2
j



+ ζ/200




∑

j∈G

xjp
2
j



+ 1/2





n′
∑

j=1

xjpj





2

.

5.2.3 Lower bounds on the RHS of (5)

The lemma below gives a general lower bound that allows us to the RHS of (5) in various ways by choosing
different subsetsS. The particular lower bounds that we later use (by plugging particular choices ofS) are
then stated in Corollary 5.5.

Lemma 5.4. For any subsetS ⊆ {1, . . . , n′} of jobs3,

n′
∑

j=1

pj(p1x{j}∪{1} + · · ·+ pjx{j}∪{j}) ≥
∑

j 6∈S

xjp
2
j +

1

2




∑

j∈S

xjp
2
j +




∑

j∈S

xjpj





2

 .

Proof. Similar to the proof of Lemma 5.3,

n′
∑

j=1

pj(p1x{j}∪{1} + · · ·+ pjx{j}∪{j}) =
1

2





n′
∑

j=1

xjp
2
j +

n′
∑

j,j′=1

x{j}∪{j′}pjpj′



 .

As x andp are non-negative vectors, ignoring the termsx{j}∪{j′} with j ∈ S andj′ ∈ S′, this can be lower
bounded by

1

2




∑

j 6∈S

xjp
2
j +

∑

j,j′ 6∈S

x{j}∪{j′}pjpj′





︸ ︷︷ ︸

(I)

+
1

2




∑

j∈S

xjp
2
j +

∑

j,j′∈S

x{j}∪{j′}pjpj′





︸ ︷︷ ︸

(II)

.

Again using thatx andp are non-negative, ignoring the terms withj 6= j we also have that



∑

j,j′ 6∈S

pjpj′x{j}∪{j′}



 ≥
∑

j 6∈S

xjp
2
j .

Hence,(I) ≥ ∑

j 6∈S xjp
2
j .

3Here, and in the following, we meanj ∈ {1, . . . , n′} \ S by j 6∈ S.

16

Let us now concentrate on(II) and in particular we show that

∑

j,j′∈S

x{j}∪{j′}pjpj′ ≥ µ2

whereµ =
∑

j∈S xjpj.

To show this we use the PSD constraint onX(i). Let v be the(|S| + 1) dimensional vector indexed by

∅ and{ij}j∈S whose entries are defined byv∅ = −µ andvij = pij = pj for j ∈ S. Let alsoX
(i)

be the
principal submatrix ofX(i) containing those rows and columns indexed by∅ and{ij}j∈S . Then

vTX
(i)
v = X

(i)
∅,∅v

2
∅ + 2

∑

j∈S

X
(i)
j,∅vjv∅ +

∑

j,j′∈S

X(i)X
(i)
{j},{j′}vjvj′

= x∅µ
2 −

∑

j

2x{j}pjµ+
∑

j,j′∈S

x{j}∪{j′}pjpj′

= µ2 − 2µ2 +
∑

j,j′∈S

x{j}∪{j′}pjpj′ =
∑

j,j′∈S

pijpij′x{ij}∪{ij′} − µ2,

which is greater than0 because of the constraintX(i) � 0 in our relaxation (and hence the submatrixX
(i)

is

also positive semidefinite). This shows that(II) ≥ 1
2

(
∑

j∈S xjp
2
j +

(
∑

j∈S xjpj

)2
)

and completes the

proof of the lemma.

Let LB(S) denote
∑

j 6∈S xjp
2
j +

1
2

(
∑

j∈S xjp
2
j +

(
∑

j∈S xjpj

)2
)

. By settingS = ∅, G andJ , the

lemma directly implies the following lower bounds:

Corollary 5.5. We have the following lower bounds on
∑n′

j=1 pj(p1x{j}∪{1} + · · ·+ pjx{j}∪{j}) :

LB(∅) = Q,

LB(J) = 1/2(Q+ L2),

LB(G) = 1/2(Q+Q+ (L− L)2).

5.2.4 Proof of Inequality (5): bounding the approximation guarantee

We use Lemma 5.3 and Corollary 5.5 to prove (5). Letǫ = 1/100. We divide the proof into two cases.
Intuitively, the first case is when we have “few” ungrouped jobs and then we get an improvement from the
ζ in Theorem 1.2. In the other case, when we have “many” ungrouped jobs, note that jobs of different job
classes have (informally) very different processing timesand thus does not affect each other. This together
with that the total fractional mass of ungrouped jobs in eachclass is less than1/10 actually gives that a
simple randomized rounding does better than the factor3/2. The formal proof of the two cases are as
follows:

Case L ≤ (1−√
ǫ)L : We will upper bound the LHS of (5))

(

1− ǫ
ζ

100

)

LB(J) +

(
1

2
− ζ

100
+ ǫ

ζ

200

)

LB(∅) + ζ

100
LB(G). (6)

17

By Corollary 5.5 this is at most
(

1− ǫ
ζ

100

)

+

(
1

2
− ζ

100
+ ǫ

ζ

200

)

+
ζ

100
=

(
3

2
− ǫ

ζ

200

)

times the RHS of (5).

By the definition ofLB(J),LB(∅) andLB(G), (6) can be written as

(

1− ǫ
ζ

100

)(
Q

2
+

L2

2

)

+

(
1

2
− ζ

100
+ ǫ

ζ

200

)

Q+
ζ

100

(
Q+Q+ (L− L)2

2

)

=

(

1− ζ

200

)

Q+
ζ

200
Q+

(

1− ǫ
ζ

100

)
L2

2
+

ζ

100

(L− L)2

2

≥
(

1− ζ

200

)

Q+
ζ

200
Q+

(

1− ǫ
ζ

100

)
L2

2
+ ǫ

ζ

100

L2

2
(sinceL ≤ (1−√

ǫ)L)

=

(

1− ζ

200

)

Q+
ζ

200
Q+

L2

2
,

which is the upper bound on the LHS of (5) from Lemma 5.3 and thus completes this case.

Case L > (1−√
ǫ)L : Let µ = L/(

∑

j∈G xj) denote the expected job size inG, i.e., of the ungrouped

jobs, and letk denote the class ofµ. LetN ⊆ G denote jobs inG in classesk − 1 and higher. Also
let X(N) =

∑

j∈N xj.

We claim thatx(N) ≤ 1/2. Indeed, by Markov’s inequality, the total mass of jobs inG in classes
k + 2 or higher is at most1/10. Moreover, as the mass of each class inG is at most1/10, we get
x(N) ≤ 3/10 + 1/10 ≤ 1/2.

Let us defineL(N) =
∑

j∈N xjpj and Q(N) =
∑

j∈N xjp
2
j . By Cauchy-Schwarz, we have

(
∑

j∈N xjp
2
j)(

∑

j∈N xj) ≥ (
∑

j∈N xjpj)
2 and hence

Q(N) ≥ L(N)2

x(N)
≥ 2L(N)2.

Next we show that the total expected size of jobs inG \N is negligible compared toL(N). Indeed a
job of classk− h has processing time at mostµ/10h−1 and the total mass of jobs of classk− h in G
is at most

∑

j∈G xj since this is the total mass of all jobs inG. This gives us the rough upper bound

L− L(N) ≤
∞∑

h=2

1

10h−1
· µ




∑

j∈G

xj



 =
L

9
.

The above gives us that

L2 ≤ L
2

(1−√
ǫ)2

≤
(

9

8(1 −√
ǫ)

)2

L(N)2 ≤
(

9

8(1 −√
ǫ)

)2 Q(N)

2

=

(
10

8

)2 Q(N)

2
=

25

32
Q(N) ≤ 25

32
Q.

18

By Lemma 5.3, we have that the LHS of (5) is at most4

Q+
L2

2
≤

(

1 +
25

64

)

Q =

(

1 +
25

64

)

LB(∅) <
(
3

2
− c

)

LB(∅),

which completes this case and the proof of (5) (and thus Theorem 5.1).

Acknowledgement

This work was done in part while the first author was visiting the Simons Institute for the Theory of Com-
puting. We thank Nick Harvey and Bruce Shepherd for organizing the Bellairs Workshop on Combinatorial
Optimization 2015, which was the starting point for this work. Aravind Srinivasan thanks Amit Chavan for
his help with LATEXpackages.

References

[1] Foto N. Afrati, Evripidis Bampis, Chandra Chekuri, David R. Karger, Claire Kenyon, Sanjeev Khanna,
Ioannis Milis, Maurice Queyranne, Martin Skutella, Clifford Stein, and Maxim Sviridenko. Approxi-
mation schemes for minimizing average weighted completiontime with release dates. InFoundations
of Computer Science, FOCS, pages 32–44, 1999.

[2] Alexander A. Ageev and Maxim Sviridenko. Approximationalgorithms for maximum coverage and
max cut with given sizes of parts. InInteger Programming and Combinatorial Optimization IPCO,
pages 17–30, 1999.

[3] Sanjeev Arora, Alan M. Frieze, and Haim Kaplan. A new rounding procedure for the assignment
problem with applications to dense graph arrangement problems.Math. Program., 92(1):1–36, 2002.

[4] Arash Asadpour, Uriel Feige, and Amin Saberi. Santa claus meets hypergraph matchings.ACM
Transactions on Algorithms, 8(3):24, 2012.

[5] Arash Asadpour and Amin Saberi. An approximation algorithm for max-min fair allocation of indi-
visible goods. InSymposium on Theory of Computing, STOC, pages 114–121, 2007.

[6] Yossi Azar and Amir Epstein. Convex programming for scheduling unrelated parallel machines. In
Symposium on Theory of Computing, pages 331–337, 2005.

[7] Nikhil Bansal and Maxim Sviridenko. The santa claus problem. InSymposium on Theory of Comput-
ing, STOC, pages 31–40, 2006.

[8] Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna. On allocating goods to maximize fair-
ness. InFoundations of Computer Science, FOCS, pages 107–116, 2009.

[9] Chandra Chekuri and Sanjeev Khanna. A PTAS for minimizing weighted completion time on uni-
formly related machines. InICALP, pages 848–861, 2001.

[10] Chandra Chekuri and Sanjeev Khanna. Approximation algorithms for minimizing averageweighted
completion time. InHandbook of Scheduling - Algorithms, Models, and Performance Analysis.2004.

4This bound is loose and can also be obtained using a independent randomized rounding instead of our negative correlation
rounding. The importance of the new rounding appears in the other case.

19

[11] Chandra Chekuri, Rajeev Motwani, B. Natarajan, and Clifford Stein. Approximation techniques for
average completion time scheduling.SIAM J. Comput., 31(1):146–166, 2001.

[12] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Multi-budgeted matchings and matroid inter-
section via dependent rounding. InSymposium on Discrete Algorithms, SODA, pages 1080–1097,
2011.

[13] Uriel Feige. On allocations that maximize fairness. InSymposium on Discrete Algorithms, SODA,
pages 287–293, 2008.

[14] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Dependent rounding
and its applications to approximation algorithms.J. ACM, 53(3):324–360, 2006.

[15] Michel X. Goemans, Maurice Queyranne, Andreas S. Schulz, Martin Skutella, and Yaoguang Wang.
Single machine scheduling with release dates.SIAM J. Discrete Math., 15(2):165–192, 2002.

[16] Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to minimize av-
erage completion time: Off-line and on-line approximationalgorithms. Mathematics of Operations
Research, 22(3):513–544, 1997.

[17] Leslie A. Hall, David B. Shmoys, and Joel Wein. Scheduling to minimize average completion time:
Off-line and on-line algorithms. InSymposium on Discrete Algorithms, SODA, pages 142–151, 1996.

[18] Han Hoogeveen, Petra Schuurman, and Gerhard J. Woeginger. Non-approximability results for
scheduling problems with minsum criteria. InInteger Programming and Combinatorial Optimization,
IPCO, pages 353–366, 1998.

[19] Jeff Kahn and P. Mark Kayll. On the stochastic independence properties of hard-core distributions.
Combinatorica, 17(3):369–391, 1997.

[20] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and Aravind Srinivasan. Minimum
weighted completion time. InEncyclopedia of Algorithms. 2008.

[21] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and Aravind Srinivasan. A unified
approach to scheduling on unrelated parallel machines.J. ACM, 56(5), 2009.

[22] Jan Karel Lenstra, David B. Shmoys, andÉva Tardos. Approximation algorithms for scheduling
unrelated parallel machines.Math. Program., 46:259–271, 1990.

[23] Konstantin Makarychev and Maxim Sviridenko. Solving optimization problems with diseconomies of
scale via decoupling. InFoundations of Computer Science, FOCS, pages 571–580, 2014.

[24] Cynthia A. Phillips, Clifford Stein, and Joel Wein. Task scheduling in networks.SIAM J. Discrete
Math., 10(4):573–598, 1997.

[25] Cynthia A. Phillips, Clifford Stein, and Joel Wein. Minimizing average completion time in the presence
of release dates.Math. Program., 82:199–223, 1998.

[26] Andreas S. Schulz and Martin Skutella. Scheduling unrelated machines by randomized rounding.
SIAM J. Discrete Math., 15(4):450–469, 2002.

[27] Petra Schuurman and Gerhard Woeginger. Polynomial time approximation algorithms for machine
scheduling: Ten open problems.Journal of Scheduling, 2(5):203–213, 1999.

20

[28] Jay Sethuraman and Mark S. Squillante. Optimal scheduling of multiclass parallel machines. InACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 963–964, 1999.

[29] Martin Skutella. Personal communication. Oct 2015.

[30] Martin Skutella. Convex quadratic and semidefinite programming relaxations in scheduling.J. ACM,
48(2):206–242, 2001.

[31] Martin Skutella and Gerhard J. Woeginger. A PTAS for minimizing the weighted sum of job com-
pletion times on parallel machines. InSymposium on Theory of Computing, STOC, pages 400–407,
1999.

[32] W. E. Smith. Various optimizers for single-stage production. Naval Research Logistics, 3:5966, 1956.

[33] Ola Svensson. Santa claus schedules jobs on unrelated machines.SIAM J. Comput., 41(5):1318–1341,
2012.

[34] Maxim Sviridenko and Andreas Wiese. Approximating theconfiguration-lp for minimizing weighted
sum of completion times on unrelated machines. InInteger Programming and Combinatorial Opti-
mization, IPCO, pages 387–398, 2013.

21

	1 Introduction
	2 Preliminaries and Lower Bounds
	3 Strong Convex Relaxation
	3.1 Lower bounds on the objective value

	4 Bipartite Assignment with Strong Negative Correlation
	4.1 Algorithm
	4.2 Analysis

	5 Rounding the Fractional Schedule
	5.1 Description of Algorithm
	5.2 Analysis
	5.2.1 Notation
	5.2.2 Upper bound on the LHS of (??)
	5.2.3 Lower bounds on the RHS of (??)
	5.2.4 Proof of Inequality (??): bounding the approximation guarantee

