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Abstract

We consider the problem of scheduling jobs on unrelated mashso as to minimize the sum of
weighted completion times. Our main result i$32 — c)-approximation algorithm for some fixed
¢ > 0, improving upon the long-standing bound of 3/2 (indepetigefue to Skutella,Journal of the
ACM, 2001, and Sethuraman & Squillan®&)DA 1999). To do this, we first introduce a new lift-and-
project based SDP relaxation for the problem. This is necgsas the previous convex programming
relaxations have an integrality gap 2. Second, we give a new general bipartite-rounding pro@dur
that produces an assignment with certain strong negativelation properties.

Keywords: Approximation algorithms, semidefinite programming, stlang

1 Introduction

We consider the classic problem of scheduling jobs on ute@laachines to minimize the sum of weighted
completion times. Formally, a problem instance consists &6tJ = {1,2,...,n} of n jobs and a sed/

of m machines; each jop € J has a weightv; > 0 and it requires a processing timegf > 0 if assigned

to machinei € M. The goal is to find a schedule that minimizes the weightedptetion time, that is
> jes w;Cj, whereC; denotes the completion time of jghin the schedule constructed.

Total completion time and related metrics such as makespadfi@v time, are some of the most relevant
and well-studied measures of quality of service in schadulind resource allocation problems. While total
completion time has been studied since the 50’6 [32], a s\adie study of its approximability was started
in the late 90’s by[[25]. This led to a lot of activity and pregs on the problem in various scheduling
models and settings (such as with or without release datesmptions, precedences, online arrivals etc.). In
particular, we have now a complete understanding of theoxjrpability in simplermachine models, such as
identical and related machines. For these settings, maatapproximation schemes were developed more
than a decade ago, e.g., in[1] B1, 9]. The more general tedetaachine model behaves very differently
and is significantly more challenging. Perhaps becausagfith study has led to the development of many
new techniques, such as interesting LP and convex progragnfmimulations and rounding techniques![25,
11,16/ 26, 15, 30] (see also the survey by Chekuri and Khak®ia [
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Figure 1: A simple example motivating the novel roundingpailitpm with strong negative correlation.

In spite of these impressive developments, it remains aiooproblem to understand the approxima-
bility of total weighted completion time in the unrelated chanes setting. On the positive side, Schulz and
Skutella [26] gave &3/2 + ¢)-approximation based on a time-indexed LP formulation,roajmg upon the
previous works of([24, 17]. Anothe3/2-approximation was obtained by Skutella|[30] and indepatige
by Sethuraman and Squillante [28] based on a novel conveyrgimming relaxation. On the other hand,
Hoogeveen et all [18] showed that the problem is APX-hartl el hardness factor was very closelto
The natural question of whether(3/2 — c)-approximation exists for the problem for some- 0 has been
proposed widely [10, 26, 20, 34,127]. In particular, it apgesasOpen Problem & the well-known list[[27]
due to Schuurman and Woeginger of the “top ten” problemshedaling. Moreover, Srividenko and Wiese
conjectured|[34] that the configuration LP for this probleas lan integrality gap that is strictly less traf2.
The unrelated machines setting is one of the most generaleasdtile scheduling models that incorporates
the heterogeneity of jobs and machines. But besides thégalamotivation, an important reason for interest
in the problem is that historically, the exploration of \ar$ scheduling problems in the unrelated machines
model has been a rich source of several new algorithmic tgeba [22| 33, [7,18./%, 4, 138, 23,121, 6].

Our Results:  Our main result is such an improved algorithm. In particuleg show the following.

Theorem 1.1. There is a(3/2 — c¢)-approximation algorithm for minimizing the total weigteompletion
time on unrelated machines, for some 107,

Remark: We do not try to optimize the constarnibo much, preferring instead to keep the exposition as
simple as possible. However, it does not seem likely thatoatysis would yield: < 1072,

The result is based on two key ideas: (i) a novel SDP relaxdtiothe problem obtained by applying
one round of lift-and-project to the standard LP formulatend (ii) a new rounding algorithm to assign jobs
to machines that reduces the “correlation” between theuarjobs assigned to a machine.

Stronger Formulation: The stronger formulation is necessary: we show that theeopvogramming
relaxation considered by [30, 28] has an integrality gap/@f Such families of instances do not seem to
have been previously known [29]; we describe them in Se@idn contrast, our stronger relaxation can be
used to derive new and tighter lower bounds on the optimunnmeydly exploiting the PSD constraint on the
underlying moment matrix.

We remark that the lower bounds we use to prove Thebérem 1.a&lsarbe obtained using the configu-
ration LP proposed by [34], which confirms their conjecturattthe integrality gap of the configuration LP
is also upper bounded H@/2 — ¢). However, we find the SDP formulation more natural as it idieily
reveals the correlation information that we use.

The Rounding Algorithm: The solution to the SDP gives a fractional assignment of jobsachines,
which we need to convert to an integral assignment. Integdgt all the previous algorithms [26, 30, 128]
are based on applying standard (i.e., independent actossrpmdomized rounding to the fractional solution
to find an assignment of jobs to machines. However, a verylsiexample (in Sectiohl 2) shows that no



such ‘independentandomized rounding” based algorithm can giv&/a — (1) guarantee, irrespective of
the underlying convex relaxation. The problem is that thiéavae can be too high.

To get around this, we need to introduce s@trengnegative correlation among pairs of jobs assigned
to any maching (i.e., the ratio of the probability that they are both schedwn: to the product of their
respective probabilities of assigment®©ishould bel — 2(1)). For intuition, consider the example depicted
on the left in Figurél: we have a sgt, 2, 3,4} of four jobs, two machines, b, and the SDP assigns each
job fractionally 1/2 to both machines. Note that independent randomized rogndould assign any two
jobs j andj’ to machinea (and similarly tob) with probability 1/4. Ideally, we would like to have strong
negative correlation that decreases this probability figrairs of jobs. Unfortunately, this is not possible in
general as can be seen hy taking> 1 jobs instead of in the considered examE].eHowever, one can still
hope for a randomized rounding with strong negative caticridor some of the jobs while maintaining that
no two jobs are assigned to a single machine with probalilitye thant/4. This is what our randomized
rounding algorithm achieves.

The pairs of jobs that will have strong negative correlatoa decided by a grouping scheme: for each
machinei, the jobs are partitioned into groups with total fractioaasignment on being at mosfi. The
jobs in the same group are those that will have strong negatiwelation. This step is illustrated on the
right of Figure[1. Machine: has two groups consisting of jodg, 3} and{2,4} and machiné has two
groups consisting of job§l, 2} and{3, 4}. Viewing this as a bipartite graph with group and job vegijoge
would like to find an assignment with strong negative coti@faon the edges incident to the same group.
This is reminiscent of the several randomized pipage-baskemes [2,/13, 12, 14, 19] that given a fractional
matching produce an integral matching. In fact, these gdegpienegative correlation between edges at a
vertex as only one edge is picked at any vétex

However, these techniques do not work in our setting of gerssignments due to a somewhat subtle
issue; trying to force strong negative correlation betwienm edges in a group of a machine can cause
unexpected positive correlations among other edges ofithahine. In particular, in our example, previous
rounding technigues would output one of the two perfect hiatgs with equal probability (the two perfect
matchings are indicated by dashed and solid edges in thedfigtigure[1) — thus yielding perfegtositive
correlation, e.g., for job$ and4 being assigned to machimae

To get around this we give a new rounding theorem. The mael@dind the algorithm is to update the
fractional assignment using randomized pipage steps aargjully chosen paths of length 4. In particular,
these paths are chosen based on a random 2-coloring of the edigre the coloring is based on the frac-
tional assignment and evolves over time. The propertieBisigeneral rounding technique are summarized
in the theorem below. We believe that this technique can Heddpendent interest, as it appears to be
the first to obtairstrongnegative correlations. Indeed, our rounding maintaingdétsred properties from
independent randomized rounding (properties (&), (b) ta@decond part ofyc) of Theordm11.2) while also
achieving a guaranteed amount of pairwise negative —freng— correlation (the first part afi(c)). This is
key for our result, and we are not aware of any prior work is trgin.

Theorem 1.2. Let¢ = 1/10s. Consider a bipartite graplé; = (U UV, E) and lety € [0, 1] be fractional
values on the edges satisfyin@(v)) = 1 forall v € V. For each vertex. € U, select any family of disjoint

E&”,Eﬁf), ... ,Eff“) C 40(u) subsets of edges incidentdcuch thaty(Eff)) <lforé{=1,...,k,. Then

1Any scheduler of n jobs on2 machines, must haver; ;[ = assigngj and;’ to the same machife> 1/2 — o(1). A simple
proof of this is as follows. Supposeassignss jobs to the first machine artidobs to the second machine, where- ¢ = n. Then,
conditional on this, the desired probability(i§) + (5 ) )/ () which is minimized at = ¢ = n/2, and has valu¢/2—o(1). Now as
E, Pr; ;[ = assignsj and;’ to the same machihe= E; ;, Pr.[ 7 assigng and;’ to the same machifhewe have that there exist
two jobsj and;’ that are assigned to the same machine with probability st1¢a — o(1) (and thus to one of them with probability
at leastl /4 — o(1)) no matter which algorithm, i.e., distribution over schiegur, that is used.

2plthough they can introduce positive correlation between-adjacent edges.



there exists a randomized polynomial-time algorithm thatpats a random subset of the edges C F
satisfying

(a) Foreveryv € V, we havg E* N §(v)| = 1 with probability 1;
(b) Foreverye € FE, Prle € E*] = y,;
(c) Foreveryu € U and alle # €' € 6(u),

(1—=20)  yeyer fife,e € E&é) forsomel € {1,2,..., Ky},

Prle€ E*Ne' € E*] < .
Yele! otherwise

In the above theorem, we use the standard notatien = {¢ € E : w € e} to denote the set of edges
incident to a vertexv, and lety(F') = 3 . y. for any subsef” C E of edges.

2 Preiminariesand Lower Bounds

On a single machine, the weighted completion is minimizediolering the jobs in non-increasing order of
wj/pj, referred to as the Smith ordering. In the unrelated mastgeting, for each machiridet <; denote
the Smith ordering of jobs on machingi.e. ;' <; j iff w; /p;;» > w;/pi;). Given an assignment of jobs to
machines, the total weighted completion time is simply

MY wipy(Y ] pir)
i jEJ(i) =t
where.J (i) denotes the set of jobs assigned to machine

For eachi € M andj € J, consider a binary variable;; that should take valugif and only if job j is
assigned to machinge Then the exact quadratic program can be formulated asvsilo

(QP) Minimize > wiz | > pipwiy

ieM jed Jj'ed:j'Rig
subjectto Y "y =1 forall j € J,
ieM

z € {0, 1}M*N,

The Convex Programming relaxation of [30,28]: We only describe the relaxation of [30,128] here and
refer to [30] for details on how it is obtained. They relax tfzgiablesz;; in (QP) above to be fractional in
[0,1], together with the fact thait; = =;; for an integral solution and thaf = := Y=, >, w;pijzi; is @
lower bound on any solution to obtain the following convetaxation:

(CP) Minimize z
. 1 1
subjectto  z > §CTw + §wTDx

zchac

d =1 forall j € J,
ieEM
z e [0, 1MV,
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wherez” Dz := 222 wi (X<, 2pijr iy + pijrij)Ti5) can be shown to be a convex function. We wiill

refer toc’ z andz” Dz as the linear and quadratic terms respectively.

A 3/2integrality gap instance for CP: Consider the following instance. There @re- 1 jobs, all of weight
1. The firstk jobs are of size (processing timé)each and can only be placed on maching.e., have
infinite size on other machines). Jébr 1 has size:? and can be placed on any machihe. . ,m, where
we letm =k + 1.

Claim 2.1. The above instance has an integrality g&@ — O(1/k) for (CP).

Proof. First observe that any integral solution has value grehtam {3/2)k? as the total completion time
of the firstk jobs isk(k + 1)/2 while the last job has a completion timeof.

Now, consider the fractional solution where eachjob. ., k is assigned to exteriton machinel, and
job k + 1 is assigned to each machinéor i = 2,...,m, to an extent ol /(m — 1) = 1/k. We will show
that this solution has fractional value at mé3st+ .

First, the linear term” z is k + k2 (k for the firstk jobs andk? for the big job). Second, the quadratic

termis
k

m 2
wTDx:Z(2(j—1)+1)+Z(mk_71)2:k2+

j=1 =2

2

=k + k.

m —

In particular, the first: jobs contributek? above, and for the last job each of tie— 1 machines contributes
k?/(m — 1)2. Thus (CP) has objective value at mést+ k. O

Note that in this example, the problem is that both the lireead quadratic bounds are weak on the
overall instance. In particular, while the linear boundxaa on the big job, it is very weak on the small
jobs. On the other hand, the quadratic term is exact on thé grs, but very weak on the big job.

Limitation of Independent Randomized Rounding based approaches. The previous-best approximation
algorithms are based on standard (iredependenécross jobs) randomized rounding. We show that no such
rounding can beat the approximation guarante®/af irrespective of the relaxation. Consider the (trivial)
instance withm jobs each of which can be placed on any of thenachines, and withy; = p;; = 1 for alll

i, j. The fractional solutiorr;; = 1/m for all i, j € [m] is a valid solution for any relaxation (as it is can
be expressed as a convex combinatiomoperfect matchings). Clearly, the optimal solution assigns

job to each machine and has value However, under independent randomized rounding, foelargthe
number of jobs assigned to a machine approaches a Poissdbputiisn with meanl and so the probability
that a machine getsjobs is~ 1/(e - k!). The expected completion time on any machine is thus

e}

k(k+1) s
2 ek!

~
~

k=0
which is3/2 as the first and second moments of Poisspafe1 and2 respectively.

Theneed for negative correlation in different classes. The above example might suggest that randomized
rounding performs poorly only when the total maSj(xij) on a maching is close tol, as intuitively

the effect of the variance should be relatively small if thare many jobs. This intuition is indeed true if
the jobs are similar to each other in terms of size (procgstine) and weight. However, the following
example shows that some more care is needed if the jobs ardigeimilar. Suppose there afob classes

k =1,...,¢, where a clas& job has weight\* and sizeM —* for some largeM/, and that maching
hasm jobs from each class, with;; = 1/m for all jobs j. So the total fractional assignment of jobs to
i is £. Now, as the Smith ratios are very different, the jobs froffedent classes have negligible effect on
each other: only the individual cost of each class matters the fractional cost is2 >4 _, M*M~F = ¢.
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Now, if we round each job independently, the expected co3t/8, and it is not hard to see that to get a
((3/2) — c)—approximation, we need to get a non-trivial negative datien in at least2(c) fraction of the
classes.

It turns out that this example is in a sense the worst possibiaotivates our rounding procedure in
Sectiorb. Roughly speaking, it suffices to partition thesjobdifferent classes so that the total fractional
weight is aboutl, and then try to get some strong negative correlation wititis of each class.

3 Strong Convex Relaxation

In this section, we give a strong convex relaxation basederparadigm of “systematically” relaxing the
exact quadratic mathematical progrgm [QP) to a tractabheesoprogram. In particular, our relaxation
can be obtained “automatically” using the Lasserre/SusBapfares hierarchy (although we have chosen to
write this section in a self-contained manner).

To obtain a convex relaxation df (QP), we linearize it by agplg each quadratic termy; - z;;» by
a new variabler;; ;;n with the exception that;; - z;; is replaced by the existing variablg; (since in
any binary solutiornc?j = m;;). For notational convenience, we also refer to variableas x(;; and
we introduce an auxiliary variable; and setxy = 1. The set of variables of our relaxation is thus
{zg} U {zijy0qi57) e,y jes. Clearly any intended solution satisfies thaf.,, z;; = 1 and thatz is
non-negative. Another family of valid constraints is addafs. For a machine € M, let X be the
n+1) x(n+ 1) matrix whose rows and columns are indexed(bgnd {ij};c;. The entries ofX ®)

are defined beST = xgur. In particular, this implies thaKé ?{U} = Xg} iy = Tij (that we will use

crucially). We impose the constraint th&t? = 0. These are valid constraints: indeedXif) corresponds
to an integral assignmentthen

X0 =2T+=0 where z= (1,21, @)’
(i) Ty — x
andX{U} i = = (22" )ij45 = TijTy; = X@ {is}

The above yields the following convex (semidefinite progmng) relaxation of our problem:

(SDPRninimize Z ij Z Pij' T {ijyufij'}

€M jeJ j'ed:j' =]
subjectto Y x; =1  forallj € J,
€M
X® =0  forallie M,
g =1,
X{p >0  forallie MandS,T C Jwith|S],|T| < 1.

3.1 Lower boundson the objective value

We briefly sketch why this SDP is stronger; e.g., it is exacth@8/2 integrality gap instance from Section
2.

Similar to previous works, our analysis reduces to that dfifixa single machinéand analyzing the cost
of that machine: we compare the contribution of that machingae objective of[(SDP) to the (expected)
cost of that machine in the schedule returned by our (ranzkahialgorithm. To do so, it will be important

6



to understand machings contribution to the objective when a job’s processingetieguals its weight, i.e.,
pij = wj for j € J. In this case,

n
D> _wj ( > Pij“{m}u{m}) = 2_PusPaepioqn + -+ Pl
jed J'€J:g 2] J=1
where we numbered the jobs according to the Smith orderingaxhinei.

Interestingly, we can lower-bound this quantity is variouesys as shown in the following lemma. The
proof of this lemma crucially uses the SDP constraints amttierred to the analysis of our approximation
guarantee (see Lemrmab.4).

Lemma 3.1. For any subset C {1,...,n} of jobs,

2
- 1
> piipazupogny + o+ Py anoEn) = > TPy + 3 (Z Tijpy; + (Z xszz’j) ) :

j=1 jes jes jes

In particular, we can choose the best Sehat gives us the tightest combination of the linear and the
quadratic lower bounds. In contrast, the relaxations usd@d, 28] basically take the maximum lower
bound (averaged over the machines) obtained by eithengétti= () or S = J.

This flexibility in choosingS will be critical to our analysis. For thg/2 gap instance, recall that the
linear bound was tight for the large job, while the quadrbband was tight for the small jobs, which makes
the SDP exact on that instance.

4 Bipartite Assignment with Strong Negative Correlation

As discussed in Sectidn 2, independent randomized rourgdingot give a better approximation ratio than
3/2. To improve upon this ratio, we would ideally like to intragustrong negative correlation on jobs being
assigned to a machine of the following type: if a jpis assigned to a machine, it should be less likely to
assign other jobs to that machine. While it is not always iggjfdle to introduce such negative correlations
among all jobs, Theorein_ 1.2, which we prove in this sectibows that it is possible to introduce strong

negative correlation between subsets of jobs (or vertisgtput introducing positive correlations at pairs

of edges with a common end-point. For convenience, we eetitattheorem here.

Theorem[L2 Let¢ = 1/10s. Consider a bipartite graple; = (U U V, E) and lety € [0, 1] be fractional
values on the edges satisfyin@(v)) = 1 forall v € V. For each vertex. € U, select any family of disjoint
E&”,Eﬁf), ... ,Eff“) C 0(u) subsets of edges incidentdcuch thaty(Eff)) <lforé{=1,...,k,. Then
there exists a randomized polynomial-time algorithm thatpats a random subset of the edges C F
satisfying

(a) Foreveryv € V, we havg E* N §(v)| = 1 with probability 1;
(b) Foreverye € E, Prle € E*] = y,;
(c) Foreveryu € U and alle # ¢ € 6(u),

(1—=20)  yeyer fife,e € EY for some € {1,2,...,ku},

Prle € E*Ne' € E¥] < .
Yele! otherwise

We start by describing the randomized algorithm and thea igvanalysis.
Notation: Floating values. A value z € [0, 1] will be called “floating” if z € (0,1).
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Figure 2: lllustration of the update in phase 2. Solid edgesraR and either (i) thick edges are increased
by « and slim edges are decreasedabgr (ii) slim edges are increased Byand thick edges are decreased
by 5. We note thai:; may equakis but they both differ fromu.

4.1 Algorithm

We divide the algorithm into three phases and present eaateplong with some simple observations that
will be useful in the analysis.

Phase 1 (Forming the collection R*): Let y* denote the initial fractional assignment. For each vertex
v € V, partition its incident edge§v) into at most disjoint groups by letting each group —except possibly
for at most one group — be a minimal set of incident edges whbsalues sum up to at leasf6. (Note
that this results in at mostgroups since/*(6(v)) = 1, and that these groups can be formed arbitrarily by
picking the edges i (v) greedily in non-increasing order gf-value; the last group may hayg-value
smaller thanl /6.) Now select a random group, uniformly at random and inddgetly for each vertex,

and letR* be the set of selected edges.

Observation 4.1. Lete, e’ € 6(u) for someu € U. Then,Pr[(e € R*) A (¢/ € R*)] > 1/36.

Proof. The events that € R* and thate’ € R* are independent as they both are incident to different
vertices inV. Now the statement follows as eacle V' selects a random group out of at méshany. [

Phase 2 (Updatingtheassignment): Initially let y = y*, R = R*. Repeat the following steps while there
exist edgedu, v1 }, {u, vo} € RN EY for somel and{ur, v} € 6(v1) \ R and{us, v2} € 6(vs) \ R with
floating y-value. Hereu, w1, us € U, v1,v9 € V, but are otherwise arbitrary. See Figlte 2:

1' LetOé = min{yu1,v17 1— yu,vlayu,vza 1-— yug,w} and/B - mln{l - yu1,v1 ) yu,vla 1-— yu,v27 yug,vg}-

2. With probabilityﬁ, updatey as follows for eacle € E:
ye+ 5 ife={u,v}ore={u,ve},

Ye =1 Ye — F ife={u,v}ore={us,vs},
Ye otherwise.

Otherwise (with remaining probabilitxﬁ—ﬁ), updatey as follows for eacle € E:

ye —a ife={ug,v1}ore={u,vs},
Ye = Ye +a ife={u,v1}0re={ug, v},
Ye otherwise.



3. Forv € {vy,v2}, if 3 c5)nr ¥e = 1, i.€. if all the edges incident toare in 2, then update? as

R=(R\0 U e (-
(R0 U {arg max |

That is, remove all edges incidentd#drom R, except one with the largegtvalue.
We note the following simple observations about this phase.

Observation 4.2. During Phase 2, if a variablg. reached or 1, then it is not updated anymore. Moreover,
at each iteration of Phase 2, at least one edge with floagivglue has itg;-value reachd or 1.

Proof. This follows from that Phase only updates floating-values and, in each iteration, and 3 is
selected so that one of the selected edgesilue will reach0 or 1. O

Observation 4.3. Phase2 satisfies the invariantg(d(v)) = 1 for everyv € V andy. > 0 for everye € E.

Proof. Notice that whery is updated then the selection @fand 3 guarantees that. > 0 for everye € E.
Moreover, the update is designed so that the fractionalegegf a vertex in/ stays constant. Thus the
statement follows since we start wigh= y* for which y(d(v)) = 1 forv € V. O

Observation 4.4. The setk does not increase in size during Phase 2. Moreover, if an edgé(v) N R is
removed fromR (in Sted B) then it must be thate) < 1/2 after Stef 2.

Proof. That R only decreases in size follows directly from Skép 3. For #eoad part, if Stepl3 is applied
atv andy(e) > 1/2 for somee € 6(v), thenasy .5,y y(€') = 1, it must be that = arg max.¢5(,) and
thuse remains ink. O

Observation 4.5. When Phase terminates, then for every € U and? € {1,...,k,}, we havel{e €
EP ARy >0} <1

Proof. Suppose that there exist, e € Ey) N R with y.,,y., > 0. Then since any iteration of Pha3e
maintains the value opj(Eﬁf) N R)andR C R* we havey(Eff) NR) < y*(Eq(f) N R*) < 1. Hence,
Ye,» Yeo, < 1. Now by Step3 of Phase2, we are guaranteed that a not-yet-integrally-assignetxerc V'
hasy(d(v) N R) < 1. Therefore, there exist edges= {vi,u}, ez = {ve,u} and{u;,v1} € §(v1) \ R and
{ug,va} € 6(v2) \ R with floatingy-values. This implies that Pha8eloes not terminate in this case.]

Phase 3 (Randomized Rounding): Form E* by, independently for each vertexc V, selecting a single
edgee € 0(v) so thate € 4(v) is selected with probability,.. Notice that this is possible because, by
Observation 413, we have .4, ye = 1 forallv € V andy. > 0 foralle € E.

4.2 Analysis

We first note that the algorithm terminates in polynomialdimrPhasd and Phasé& both clearly run in
polynomial time. Each step of Phageuns in polynomial time and by Observationl4.2, Phasens in at
most| E| iterations.

We continue to analyze the properties. The intuition for whgy should hold is as follows. The algo-
rithm is inspired by randomized-rounding algorithms fgoditite matchings such as pipage rounding and
swap rounding. Itis easy to see that these algorithms g&kigh Propertyr{a) and the marginal probabilities
(Property[(b)): indeedy and g are defined in order to do so. Moreover, the weak bound of Profm fol-
lows basically from the fact that, for eaehe U, they-values of two edges incident toare never increased



simultaneously. Finally, the intuition behind the novebsg bound of Property(c) is as follows. After
Phase, the probability that two vertices, ¢’ € Eﬁf) are inR is at leastl /36. Now using that the initial
y-value of edges in(v) N R is at mostl /3 for everyv € V, and that the/-values of edges are preserved in
expectation, there is a reasonable probability that bothwill remain in R until the end. However, in that
case, it is easy to see by Observatiod 4.5 that at most onemfwill be selected i*. We now continue
to formally prove these properties.

Property @). That Propertyra) of Theorem 1.2 holds follows from Obséoved.3 and as Phasechooses
exactly one edge incident to eacte V.

Properties (B) and (@©): To show these properties, we will inductively show some iiards. Lety *) =
(¥ . e € B) denote the collection aj-values of edges an#(*) be the sef? at the end of iteratiot of
Phase 2. For an edge= {u,v} € Rwithu € U andv € V let R; = {¢/ € 6(v) N R : € # e} be the other
edges inR incident tov.

We show the following invariants hold after each iterationHere, conditioning an event dri*) and
R®*) means the probability of that event if the random iteration®hase 2 are applied starting from the
assignment”*) andR = R(*).

Prlec E* | YW R =y®  VeecE 1)

Prle € E* Ne' € E* | y®) r#) < ygk)ygﬂ Vu € U,e, e € 6(u) (2)
Prle € B* A € E* | YV, RW) < 2y (RP) 4 4™ (RY))y®)y () @3)

é/

VueUle{l,... ki) e#e eEYnRF

To show these, we will apply reverse induction. For the base cwe show that these properties hold
after the last iteration of Phase 2. For the inductive stepshow that if they hold after thee-th iteration
then they also hold after iteratidgn— 1 (or equivalently at the beginning of iteratids), and hence they also
hold for they-values andrR at the beginning of Phase 2.

Let us first see how this implies the theorem.

At the beginning of Phas2 we havey® = y* and R = R*. So having[(l) fork = 0, implies
Property [(b) and(2) implies the weaker bound in Propertty Foy the stronger bound, consider two edges
ete e BY, By (3) above, we have that

Prle € E* N¢' € E*] = Eg+[Pr[(e € E* A€ € E¥) | Y*, RY]]
< Prle,e’ € R - 2(y" (Re) + y"(Rer))yeys + (1 — Prle,e’ € R]) - yrys

20",
< Prle, ¢ € R*]% + (1 - Prle,e € R))ylyl

The second inequality follows from the fact tha{( R;), y*(Re) < 1/6 because, ¢’ € R and after Phase
RN 4§(v) is aminimalgroup withy*-value at least /6 for eachv € V; and the third inequality follows from
Observation 4]1.

It thus remains to prové{1)4(3) by reverse induction on temtions in Phase 2. One subtle point in the
argument is that the sé& might also change (reduce in size) after an iteration.

Base case (when Phase 2 terminates): In this case Phasg will not change any of thg/-values. As
each vertexwo € V picks an edge in(v) randomly with probabilityy., Prle € E*] = y. for every
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e € E, so [1) is satisfied. Similarly fof{2), we note that for twogede # ¢’ € d(u), it holds that
Prle € E* A€ € E*| = yeyer-

Finally, Observation 415 says that the number of edge@ﬁfﬁ N R with positive y-value is at mosi.
Therefore, we have thdtrje € E* A e’ € E*| =0fore #£ € € EY N R and (3) holds trivially.
Inductive step: Assuming [(1)4(B) holds at the end of iteratién we prove that they hold at the end of
iterationk — 1).

For notational ease, let us dendfe= Y*~1) R = R(*~1) and letY’ = Y* andR’ = R® denote the
(random) updateg-values and sek.

We first verify [1). By the inductive hypothesis (1.H.) we leathatPrfe € E* | Y'] = y,. So,
Prle € E* | Y] = Ey/y[Prle € E* | Y]}, which iSEy/|y[ye] If Phase2 did not update the value of edge

e then clearlyy, = y.. Otherwise, we hav&yy [y,] = P (ye + B) + a+/3 (ye — @) = ye. Thus, [1) holds
in either case.
Similarly, we showl[(R). By the LHPr[e € E* A ¢’ € E*|Y'] < y.y., and thus

Prle € E*Ne € E* | Y] =Ey/y[Prle € E* Ae’ € E* | Y'] < Eyry [yoyu)-

On the one hand, if Phageonly changed thg-value for at most one af ande’, then by independence this
is at mostEy |y [y, |Ey+ |y [y./] = yeyer- On the other hand, if it changed both of the values then we hav

Bvlutald = =+ Ao = 8) + —2— (0 — @)y + ) < v

Indeed, if Phase changes the value of two edges incident to a vertéx then it always increases the value
of one edge and decreases the value of the other edge. Wehnawvthat[(R) is satisfied.

We finish the analysis by verifying)(3). Consides ¢’ € E\” N R for someu € Uandl € {1, ..., #,}.
We wish to show that

Prle € E* A€’ € E* | Y] < 2(y(Rz) + y(Rer))yeye-
Let R’ be the sefr after the single iteration of PhageAs previously we will use that
Prlec E*Ne' € E* | Y] =Ey/y[Prle€ E* Ae' € E* | Y]

and the I.H., but we cannot do it directly as it might the cdme even thougle ande’ belong toR, they
may not belong ta?’. So we condition the right hand side depending on whethsridappens or not.

Supposee ¢ R'. Then by Observatioh 4.4/(R;) > 1/2 and hence we have tha{y'(R:) +
v (Re))yeyl, > yiyl,. By (2) we have that

Prle € E* A€ € E* | Y/, R < ylyl,
this implies that (conditioned on¢ R')
Prle € E*Ne € E* | Y, R < 2(y'(Rz) + ¥/ (Re)) Yoyl

The same holds i# ¢ R'.
Now if both e ande’ lie in R’ by the I.H. we know that

Prlec E* Ne € E* | Y, R <2y (R}) + ¥/ (Ro))yeyl < 2(y'(Re) + ' (Rer) )yl yer,

where the last inequality follows from Observatfonl|4.4., ifeom the fact thaf?’ C R.
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We have thus upper bounded all cases (irrespective of whEtfm®ntainse or ¢’) by the same expression
and it suffices to show

Ey/ v [2(y'(Re) + v/ (Re ) yeyer] < 2(y(Re) + y(Re))yeyer

If neithere or ¢’ is changed by the iteration of Phasehen

Eyiy[2(4'(Re) + ' (Re))y.yer] = Eyry [2(4'(Re) + ' (Rer))yeyer = 2(y' (Re) + ' (Rer))yeyer,

where the second equality follows by linearity of expectatand [(1).

Now suppose the iteration of Phaksehanges at least one @br ¢’. Then we claim thay' (R;) = y(Rz)
andy’(Rz) = y(Re). To see this note that an iteration of Phasghanges exactly two edges fhincident
to the same vertex iy and since, in this case, one of them is incident.tso must the other one. The
setsR; and Rz only contain edges aR that are not incident ta and are thus left unchanged in this case.
Hence,

Ey/y [2(y' (Re) + ' (Rer))yeyer] = 2(y(Re) + y(Re')) Eyjy [yeye/]
< 2(y(Re) + y(Re))yeyer,

where the last inequality follows frorhl(2). We have thus gdsaved [(3) which completes the proof.

5 Rounding the Fractional Schedule

We now describe our scheduling algorithm. The algorithnvesmthe SDP relaxation from Sectioh 3, and
applies the bipartite rounding procedure from Sedtibn 4 soitably defined graph based on the SDP so-
lution. We will analyze this algorithm in Sectidn 5.2, andparticular show the following result which
directly implies Theorern 111.

Theorem 5.1. The expected cost of the rounding algorithm is at nf&/st— c) times the cost of the optimal
solution to the relaxation, where= ¢/20000 and( is the constant in Theorem1.2.

5.1 Description of Algorithm

Our rounding algorithm consists of defining groups (i.ee ﬂamiliesEff)) for each machine and then
applying Theoreri 1]2. Specifically, letdenote an optimal solution to our relaxation. We shall iortetr
the vectory = (z;;)icnm,jes @s an fractional assignment of jobs to machines in the lipagtaphG =
(MU J,E)whereE = {ij : y;; > 0}. Notice, thaty(6(j)) = 1 for eachj € J andy > 0. Thus,y satisfies
the assumptions of Theordm 11.2. It remains to partition thgees incident to the machines into groups. To
do this, we apply the following grouping procedure to eacltmvae separately.

Grouping Procedure: For a fixed machine we define the groups as follows:
1. Call ajobj of classk, if p;; € [10%~1,10%). We assume (by scaling) that; > 1if p;; # 0.

2. Foreachclase =0,1,2,..., order the jobs in that class in non-increasing order of Bmitio, i.e.,
wj /pi;, and form groups as follows. If some jghhasz;; > 1/10, it forms a separate group by itself
{j}. For the remaining jobs, greedily pick the jobs in clas that their total fractionaj-value or:
first reaches at leadt/ 10 and make it a group; and repeat until the remaining jobs dfdleas have
total fractional value less thairy10.

12



The height of the jobs represent
their processing times which are all
in [10¥~*, 10") since we only con-
sider jobs of class.

112 /6 12 118 /12 /12

The jobs are ordered in non-increasing order of Smith’e@atid the widths
of the depicted jobs show thejrvalue on the considered machine.

Figure 3: Example of the grouping procedure on a machiioe the jobs of clas&. The different groups
are depicted in different colors; the job correspondinghwnhite rectangle is ungrouped.

By definition, the ungrouped jobs in each size classave total fractional value less thar10 on
machinei. Note also that several singleton groups could be intesspdoetween jobs of a single group. For
an example see Figuré 3.

Let EZ.(l), . ,EZ.(’“) denote the groups formed, over all the classes, for maéhiée now apply Theo-
rem[1.2 to the grapty = (M U J, E) with U = M and the groupﬂﬁl), ce q(f”(“)) at the machine € U.
Observe that the conditions of the groups are satisfiedthi®y are disjoint and the totglvalue is at most
1 in all of them. This gives an assignment of the jobs to macharal thus a schedule.

5.2 Analysis

To analyze the performance of the algorithm above, we pobieeseveral steps. We first define some
notation and make some observations that allow us to expiresost of the algorithm and the relaxation in
a more convenient form. In Sectibn 5.J2.2 we show how to uppend the cost of the schedule produced by
the algorithm. In sectdn 5.2.3 we show how to derive varitnamg lower bounds from the SDP formulation,
and finally in Sectiof 5.214 we show how to combine these tesnilobtain Theorem 5.1.

5.2.1 Notation

Let X;; denote the random indicator variable that takes valifethe algorithm assigns jok to machine
i. The expected value of the returned schedule of the algoritn then be written as°,_,, ALG;, where
ALG; denotes the expected cost of machiniee.,

ALGZ' =E Z Xijwj Z Xij’pij’ = Z Wy Z pij’E[Xinij’]
JeJ 3=y jeJ 3=y

Similarly, the value of the optimal solutianto the relaxation can be decomposed into a $um,, REL;
over the costs of the machines, where

REL; = ij Z Pij' T {ijyufij'}
jeg j'eTij'=)

In order to prove Theorem 8.1, it is thus sufficient to show

ALG; < (3/2—c¢)REL;  foralli e M. (4)

13



To this end, we fix an arbitrary machine= M and use the following notation:
e For simplicity, we abbreviatg;; by pj, xi; by x5, 3050571 BY 2530451, and X;; by X;.

e We let3; = w;/p; denote Smith’s ratio of joj € J on machinei and rename the jobg =
{1727"'7n}80that61 < ﬁQ << 5n

With this notation, we can rewriteEL; andALG; as follows.

Lemmab.2. We have

9

n j
ALG = (B — Bj+1)E {Z Py Xy (p1 X1+ +pyXy)
j=1

=1

n J
REL = Z(ﬁj _ ﬁj—i—l) |:Z pj’(plx{j’}u{l} + .. +pj’${j’}u{j’}):| >
j=1

j'=1
where for notational convenience we [gf;; = 0.

Proof. We prove the first equality based on a telescoping sum argurmka second equality follows exactly
by the same arguments. Using = 3;p,; we can rewrite

n J n J
ALG, =E {Z w, (Z Xij’pj’) =E {Z BipiX; (Z Xj’pj’)
j=1 j’=1 J=1 J'=1

We now claim that the right-hand side of this expression kqua

n J
> (B — Bjs1)E {Z py Xy (p1 Xy + - +pyXy)

i=1

j'=1

Consider any ternp, X;p, X, with £ < £. This term appears i [Z;‘:l BipiX; (Z;,zl Xj,pj,)] only
whenj’ = k andj = ¢ and has a coefficient gf,. The same term appears in the expres@ﬁl(ﬁj —
Bi+1)E [Z;,:lpj/Xj/(ple + . —I—pj/Xj/)] whenj = ¢,/+1, ..., nwith coefficients(5,—5¢+1), (Brr1—
Be+2)s -+ (Bn — Bn+1). Thus, by telescoping, the coefficient in frontgfX . p, X, is agaings,. O

By combining the above lemma with](4), we have further redumear task of proving Theorefn 5.1 to
that of proving

!

E ijXj(p1X1 +"'+ijj):| <(3/2—-¢) {ij(plﬂf{j}u{u +- o+ pirguogy |- )
= =

for all n’ € J. The rest of this section is devoted to proving this inedqudér a fixedn’. We shall use the
following notation:

e Let GG denote those jobs that are in the groups that only contais fiam {1,...,n'}. LetG =
{1,...,n'}\ G denote the “ungrouped” jobs. Note that, by the definitiorhefalgorithm, specifically,
the grouping, we have that each job class has fractionaévaks thari /10 in G. LetG denote the
collection of these groups restricted to jolds. .., n'}.

14



o Letl = Z;":l ipj d_enoteihe “linear” sum and 1€ = Z;‘;l xjp§ denote the “quadratic” sum. We
also use the notatioh and( to denote the linear and quadratic sums when restrictedgmouped
jobs, i.e..L = Zje@ xjpj and@) = Zje@ ;L'jp?.

The proof of [5) is described over the following three sukises. In Section 5.2]2 we give an upper bound
on the left-hand-side (LHS) of5); in Section 5J2.3 we gieweral lower bounds on the right-hand-side
(RHS) of [B); finally, in Section 5.214 we combine these bautadprove[(h).

5.2.2 Upper bound on the LHS of (B)

We give the following upper bound on the LHS bf (5). The lemraseatially say that we have a “gain” of
O(¢) for each grouped job, which follows from our negative catiein rounding.

Lemma5.3. For @, Q and L as defined above, we have
E ijXj(ple +o X)) | < (1 —¢/200) - Q + /200 - Q + 12 - L2
j=1

Proof. Using thatX]? = X; and a simple recombination of the terms, we have that

n’ 1 n’ 1 n’ 2
E ijXj(p1X1+"'+ijj) =K §Zij?+§ Zijj
j=1 7j=1 7j=1

/ / 2
As our rounding satisfies the marginals, this can be simgltbel > =1 acjpf +1iE [(2?21 ijj) } . We
now upper bound the latter term.

)

<\ D mmpppy —C Y Y wmpppy | + Z zjp;  (by Theoreni 12 anB[X7] = E[X;] = ;)
J

E

a3’ 3,337 J:3=3'

> Xij'Pij}

G4 G'eg j#j'€G
2\,.2
=D wzypipy + Y (w5 —ap —C Y D> wmippy
33" J G'eG j#j'eG

2

2
< ijpj + ijp? —C Z Z Zip; (since¢ < 1).
J J

G'eG \jeG&’

Now, for each groug:’ € G, we have) ;s x; > 1/10 andp; > p;/ /10 for j, j' € G. Therefore,

(Z $jpj)2 > Z a:jp?/loo.

JEG! jea
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Thus, we have that the expected cost of the machine is uppeded by

/ o 2
(Z%’P?) +% ((Z%’pj) - (C >y ZEjp?/lOO))
j=1 J=1 G'eg jeG’
- (ijp?) +% ((Z xjpj) - (C%wjpi/loo))

2
(1 —¢/200) (Zm@) + ¢/200 (Z xjp]) +1/2 (Z x]p]) .

JjEG

5.2.3 Lower boundson the RHSof (B)

The lemma below gives a general lower bound that allows usgt®HS of[() in various ways by choosing
different subsets$. The particular lower bounds that we later use (by pluggiadiqular choices of) are
then stated in Corollarfy 5.5.

Lemma5.4. For any subset C {1,...,n'} ofjobg,

, 2
- 1
Y o pipirgiom + -+ piEgogy) = YT+ 3 (Z ) + (Z wﬂ’j) ) :

J=1 Jé€Ss Jjes Jjes

Proof. Similar to the proof of Lemma®5.3,

nl

ij(plw{j}u{l} + - piTogy) = (Z acjp] + Z L{jyu{s}PiP;’ ) :

Jj=1 J.3'=1

As z andp are non-negative vectors, ignoring the terms, ¢, With j € S andj’ € S’, this can be lower
bounded by

1 1
2 (Z x5 + Z x{j}U{j’}Pij’) ) (Z z;p; + Z x{j}u{j'}Pjpj’) .

J¢S 3,3'€S Jes J,3'es

() (I1)

Again using thatr andp are non-negative, ignoring the terms wijte: ;7 we also have that
2
> pipprgogs | =Y @
J.3'€8S Jés

Hence,(I) > 3. ;njpg.

®Here, and in the following, we meagne {1,...,n'}\ Sbhyj & S.

16



Let us now concentrate dd /) and in particular we show that

2
D TGPy 2
5.3'es
wherep =3 s z;pj.
To show this we use the PSD constraintX¥ff). Letw be the(|S| + 1) dimensional vector indexed by

) and{ij};cs whose entries are defined by = —p andv;; = p;; = p; for j € S. Let alsoX"” be the
principal submatrix ofX (Y) containing those rows and columns indexed)and{ij};cs. Then

(%) i i i i
I XV = XQ(L%’U% +2 Z Xj(.’q))vjv@ + Z X/ )ng)}’{j,}vjvj/

JjES J,j'€es
2
= zou® = Y 2wpint Y T(u il
J J,J'€S

2 2 2
=p = 2p7 Z T {Pipy = Z PigPij T {ijyofij'y — K
JJ'es J.j'es
which is greater thaf because of the constraiit®) > 0 in our relaxation (and hence the submatky’ is
2
also positive semidefinite). This shows tifaf) > % <ZjeS z;p3 + (Zjes a:jpj> > and completes the
proof of the lemma. O

2
Let LB(S) denote} ¢ xipF + 1 (Zjes xip; + (Zjes acjpj) ) By settingS = 0, G andJ, the
lemma directly implies the following lower bounds:

Corollary 5.5. We have the following lower bounds @;‘;lpj(plm{j}u{l} + P ugy)

LB(0) = Q,
LB(J) = 1/2(Q + L),
LB(G) = 1/2(Q + Q + (L — L)?).

5.2.4 Proof of Inequality (8): boundingthe approximation guar antee

We use Lemmabl3 and Corolldry b.5 to prove (5). £et 1/100. We divide the proof into two cases.
Intuitively, the first case is when we have “few” ungroupetdg@nd then we get an improvement from the
¢ in Theoren_L.R2. In the other case, when we have “many” ungrdypbs, note that jobs of different job
classes have (informally) very different processing tiraed thus does not affect each other. This together
with that the total fractional mass of ungrouped jobs in eele8s is less tham/10 actually gives that a
simple randomized rounding does better than the fagt@r The formal proof of the two cases are as
follows:

Case L < (1 —+/€)L : We will upper bound the LHS of{5))

¢ 1 ¢ ¢ ¢
<1 - e—> LB(J) + (5 ST e%> LB(0) + 1o5LB(G). (6)
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By Corollary[5.5 this is at most

¢ 1 ¢ ¢ ¢ (3 ¢

times the RHS of (5).
By the definition ofLB(.J), LB(0)) andLB(G), (6) can be written as

CN(Q I*\ . (1 ¢ ¢ ¢ (Q+Q+ (LT
@—ﬁaﬁ<5+3J+(5—ﬁﬁ+%@>Q+ﬁa< 5 )

(¢ ¢ ~ ¢ V12 ¢ (LI
_0__vQ+ﬂ#+O_ﬁ%>?+ﬁTff_

2(1—L>Q+i@+<l—ei>%2+ < (sinceL < (1 —+/e)L)

200 200 100 100 2
¢ ( ~, L
—(1- > = =
( 200) ¢ T a09 T 2

which is the upper bound on the LHS bf (5) from Lemimd 5.3 and ttampletes this case.

Case L > (1 —/e)L: Letfi = L/(3_ ;) denote the expected job size @ i.e., of the ungrouped

jobs, and letc denote the class gf. Let N C G denote jobs irG in classes: — 1 and higher. Also

We claim thatz(N) < 1/2. Indeed, by Markov’s inequality, the total mass of jobgdrin classes
k + 2 or higher is at most /10. Moreover, as the mass of each clasiiis at mostl /10, we get
z(N) <3/10+1/10 < 1/2.

Let us defineL(N) = 3.y z;p; and Q(N) = >y z;p;. By Cauchy-Schwarz, we have
O jenip3) (X jen i) > (X jen ipy)? and hence

Q(N) >

Next we show that the total expected size of job&il N is negligible compared ta (V). Indeed a
job of classk — h has processing time at mgst10"~! and the total mass of jobs of claks- h in G
is at mostzjeé z; since this is the total mass of all jobs@ This gives us the rough upper bound

— — 1 _ L
L-L(N) < Z 1071 R (Zajj) 9
h=2 Jj€G

The above gives us that

P2t = (qrvm) 1= () %

2
(%) L2 -Zam <o

IN

8 2
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By LemmdX5.B, we have that the LHS &f (5) is at ntbst

L2 25 25 3
Q+7 < <1+@>Q: <1+6—4>LB(®) < <§—c> LB(0),

which completes this case and the proofldf (5) (and thus Emelér]).
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