11 research outputs found
Mice lacking programmed cell death-1 show a role for CD8+ T cells in long-term immunity against blood-stage malaria
Even after years of experiencing malaria, caused by infection with Plasmodium species, individuals still have incomplete immunity and develop low-density parasitemia on re-infection. Previous studies using the P. chabaudi (Pch) mouse model to understand the reason for chronic malaria, found that mice with a deletion of programmed cell death-1 (PD-1KO) generate sterile immunity unlike wild type (WT) mice. Here we investigated if the mechanism underlying this defect during acute immunity also impacts on long-term immunity. We infected WT and PD-1KO mice with Pch-malaria and measured protection as well as immune responses against re-infections, 15 or 20 weeks after the original infection had cleared. WT mice showed approximately 1% parasitemia compared to sterile immunity in PD-1KO mice on re-infection. An examination of the mechanisms of immunity behind this long-term protection in PD-1KO mice showed a key role for parasite-specific CD8 + T cells even when CD4 + T cells and B cells responded to re-infection. These studies indicate that long-term CD8 + T cell-meditated protection requires consideration for future malaria vaccine design, as part of a multi-cell type response
Heterosubtypic Protection Induced by a Live Attenuated Influenza Virus Vaccine Expressing Galactose-α-1,3-Galactose Epitopes in Infected Cells
Influenza A viruses have multiple HA subtypes that are antigenically diverse. Classical influenza virus vaccines are subtype specific, and they cannot induce satisfactory heterosubtypic immunity against multiple influenza virus subtypes. Here, we developed a live attenuated H1N1 influenza virus vaccine that allows the expression of α-Gal epitopes by infected cells. Anti-α-Gal antibody is naturally produced by humans. In the presence of this antibody, human cells infected with this experimental vaccine virus can enhance several antibody-mediated immune responses in vitro. Importantly, mice expressing anti-α-Gal antibody in vivo can be fully protected by this H1N1 vaccine against a lethal H5 or H3 virus challenge. Our work demonstrates a new strategy for using a single influenza virus strain to induce broadly cross-reactive immune responses against different influenza virus subtypes.Anti-galactose-α-1,3-galactose (anti-α-Gal) antibody is naturally expressed at a high level in humans. It constitutes about 1% of immunoglobulins found in human blood. Here, we designed a live attenuated influenza virus vaccine that can generate α-Gal epitopes in infected cells in order to facilitate opsonization of infected cells, thereby enhancing vaccine-induced immune responses. In the presence of normal human sera, cells infected with this mutant can enhance phagocytosis of human macrophages and cytotoxicity of NK cells in vitro. Using a knockout mouse strain that allows expression of anti-α-Gal antibody in vivo, we showed that this strategy can increase vaccine immunogenicity and the breadth of protection. This vaccine can induce 100% protection against a lethal heterosubtypic group 1 (H5) or group 2 (mouse-adapted H3) influenza virus challenge in the mouse model. In contrast, its heterosubtypic protective effect in wild-type or knockout mice that do not have anti-α-Gal antibody expression is only partial, demonstrating that the enhanced vaccine-induced protection requires anti-α-Gal antibody upon vaccination. Anti-α-Gal-expressing knockout mice immunized with this vaccine produce robust humoral and cell-mediated responses upon a lethal virus challenge. This vaccine can stimulate CD11blo/− pulmonary dendritic cells, which are known to be crucial for clearance of influenza virus. Our approach provides a novel strategy for developing next-generation influenza virus vaccines
Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria
10.1002/emmm.201202273EMBO Molecular Medicine57916-93
PD-1 Dependent Exhaustion of CD8+ T Cells Drives Chronic Malaria
Malaria is a highly prevalent disease caused by infection by Plasmodium spp., which infect hepatocytes and erythrocytes. Blood-stage infections cause devastating symptoms and can persist for years. Antibodies and CD4+ T cells are thought to protect against blood-stage infections. However, there has been considerable difficulty in developing an efficacious malaria vaccine, highlighting our incomplete understanding of immunity against this disease. Here, we used an experimental rodent malaria model to show that PD-1 mediates up to a 95% reduction in numbers and functional capacity of parasite-specific CD8+ T cells. Furthermore, in contrast to widely held views, parasite-specific CD8+ T cells are required to control both acute and chronic blood-stage disease even when parasite-specific antibodies and CD4+ T cells are present. Our findings provide a molecular explanation for chronic malaria that will be relevant to future malaria-vaccine design and may need consideration when vaccine development for other infections is problematic
Discrepant serological findings in SARS-CoV-2 PCR-negative hospitalized patients with fever and acute respiratory symptoms during the pandemic
Coronavirus Disease 2019 (COVID-19) serology has an evolving role in the diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, its use in hospitalized patients with acute respiratory symptoms remains unclear. Hospitalized patients with acute respiratory illness admitted to an isolation ward were recruited. All patients had negative nasopharyngeal swab polymerase chain reaction (PCR) for SARS-CoV-2. Serological studies using four separate assays (cPass: surrogate neutralizing enzyme-linked immunosorbent assay [ELISA]; Elecsys: N-antigen based chemiluminescent assay; SFB: S protein flow-based; epitope peptide-based ELISA) were performed on stored plasma collected from patients during the initial hospital stay, and a convalescent visit 4-12 weeks later. Of the 51 patients studied (aged 54, interquartile range 21-84; 62.7% male), no patients tested positive on the Elecsys or cPass assays. Out of 51 patients, 5 had antibodies detected on B-cell Epitope Assay and 3/51 had antibodies detected on SFB assay. These 8 patients with positive serological test to COVID-19 were more likely to have a high-risk occupation (p = 0.039), bacterial infection (p = 0.028), and neutrophilia (p = 0.013) during their initial hospital admission. Discrepant COVID-19 serological findings were observed among those with recent hospital admissions and bacterial infections. The positive serological findings within our cohort raise important questions about the interpretation of sero-epidemiology during the current pandemic.NUHS Clinician Scientist Program (NCSP)award to G. B. C
Programmed death-1 ligand 2-mediated regulation of the PD-L1 to PD-1 axis is essential for establishing CD4⁺ T cell immunity
Many pathogens, including Plasmodium spp., exploit the interaction of programmed death-1 (PD-1) with PD-1-ligand-1 (PD-L1) to "deactivate" T cell functions, but the role of PD-L2 remains unclear. We studied malarial infections to understand the contribution of PD-L2 to immunity. Here we have shown that higher PD-L2 expression on blood dendritic cells, from Plasmodium falciparum-infected individuals, correlated with lower parasitemia. Mechanistic studies in mice showed that PD-L2 was indispensable for establishing effective CD4⁺ T cell immunity against malaria, because it not only inhibited PD-L1 to PD-1 activity but also increased CD3 and inducible co-stimulator (ICOS) expression on T cells. Importantly, administration of soluble multimeric PD-L2 to mice with lethal malaria was sufficient to dramatically improve immunity and survival. These studies show immuno-regulation by PD-L2, which has the potential to be translated into an effective treatment for malaria and other diseases where T cell immunity is ineffective or short-lived due to PD-1-mediated signaling