1,167 research outputs found

    The Metal-Insulator Transition of NbO2: an Embedded Peierls Instability

    Full text link
    Results of first principles augmented spherical wave electronic structure calculations for niobium dioxide are presented. Both metallic rutile and insulating low-temperature NbO2, which crystallizes in a distorted rutile structure, are correctly described within density functional theory and the local density approximation. Metallic conductivity is carried to equal amounts by metal t_{2g} orbitals, which fall into the one-dimensional d_parallel band and the isotropically dispersing e_{g}^{pi} bands. Hybridization of both types of bands is almost negligible outside narrow rods along the line X--R. In the low-temperature phase splitting of the d_parallel band due to metal-metal dimerization as well as upshift of the e_{g}^{pi} bands due to increased p-d overlap remove the Fermi surface and open an optical band gap of about 0.1 eV. The metal-insulator transition arises as a Peierls instability of the d_parallel band in an embedding background of e_{g}^{pi} electrons. This basic mechanism should also apply to VO2, where, however, electronic correlations are expected to play a greater role due to stronger localization of the 3d electrons.Comment: 4 pages, revtex, 6 eps figures, additional material avalable at http://www.physik.uni-augsburg.de/~eyert

    Which electronic health record system should we use? A systematic review

    Get PDF
    The UK government had intended to introduce a comprehensive EHRs system in England by 2020. These EHRs would run across primary, secondary, and social care linking data in a single digital platform. This systematic review's objectives were to identify studies that compare EHRs in terms of direct comparison between systems and evaluate them using System and Software Quality Requirements and Evaluation (SQuaRE) ISO/IEC 25010. A systematic review was performed by searching EMBASE and Ovid MEDLINE databases between 1974 and April 2021. All original studies that appraised EHR systems and their providers were included. The main outcome measures were EHR system comparison and SQuaRE's eight characteristics: functional suitability, performance efficiency, compatibility, usability, reliability, security, maintainability, and portability. A total of 724 studies were identified using the search criteria. After review of titles and abstracts, this was filtered down to 40 studies as per exclusion and inclusion criteria set out in our study selection. Seven studies compared more than one EHR. The following number of studies looked at the various aspects of the SQuaRE respectively. Nineteen studies addressed functional suitability, n=18 performance efficiency, n=12 compatibility, n=25 usability, n=6 reliability, n=2 security, n=16 maintainability, and n=13 portability. Epic was the most studied EHR system and one of the most implemented vendors in the USA market, and one of the top ten in UK. It is difficult to assess which is the most advantageous EHR system currently available when looking at them in accordance with SQuaRE's eight characteristics for software evaluation

    Zero mode in the time-dependent symmetry breaking of λϕ4\lambda\phi^4 theory

    Full text link
    We apply the quartic exponential variational approximation to the symmetry breaking phenomena of scalar field in three and four dimensions. We calculate effective potential and effective action for the time-dependent system by separating the zero mode from other non-zero modes of the scalar field and treating the zero mode quantum mechanically. It is shown that the quantum mechanical properties of the zero mode play a non-trivial role in the symmetry breaking of the scalar λϕ4\lambda \phi^4 theory.Comment: 10 pages, 3 figure

    Anomalous electric conductions in KSbO3-type metallic rhenium oxides

    Full text link
    Single crystals of KSbO3-type rhenium oxides, La4Re6O19,Pb6Re6O19,Sr2Re3O9andBi3Re3O11,weresynthesizedbyahydrothermalmethod.TheircrystalstructurescanberegardedasanetworkofthreedimensionalorthogonaldimerlatticeofedgesharedReO6octahedra.AllofthemexhibitsmallmagnitudeofPauliparamagnetism,indicatingmetallicelectronicstateswithoutstrongelectroncorrelations.Theresistivityoftheserhenates,exceptBi3Re3O11,haveatemperaturedependenceof19, Pb6Re6O19, Sr2Re3O9 and Bi3Re3O11, were synthesized by a hydrothermal method. Their crystal structures can be regarded as a network of three-dimensional orthogonal-dimer lattice of edge-shared ReO6 octahedra. All of them exhibit small magnitude of Pauli paramagnetism, indicating metallic electronic states without strong electron correlations. The resistivity of these rhenates, except Bi3Re3O11, have a temperature dependence of rho(T)=\rho_{0}+AT^{n} (n \approx 1.6)$ in a wide temperature range between 5 K and 300 K, which is extraordinary for three-dimensional metals without strong electron correlations. The resistivity of Bi3Re3O11 shows an anomaly around at 50 K, where the magnetic susceptibility also detects a deviation from ordinary Pauli paramagnetism.Comment: 13 pages, 7 figures. J. Phys. Soc. Japan, in pres

    Quantum Dynamics of the Slow Rollover Transition in the Linear Delta Expansion

    Full text link
    We apply the linear delta expansion to the quantum mechanical version of the slow rollover transition which is an important feature of inflationary models of the early universe. The method, which goes beyond the Gaussian approximation, gives results which stay close to the exact solution for longer than previous methods. It provides a promising basis for extension to a full field theoretic treatment.Comment: 12 pages, including 4 figure

    Charge Ordering and Phase Competition in the Layered Perovskite Lasr2mn2o7

    Full text link
    Charge-lattice fluctuations are observed in the layered perovskite manganite LaSr2Mn2O7 by Raman spectroscopy as high as 340 K and with decreasing temperature they become static and form a charge ordered (CO) phase below TCO=210 K. In the static regime, superlattice reflections are observed through neutron and x-ray diffraction with a propagation vector (h+1/4,k-1/4,l). Crystallographic analysis of the CO state demonstrates that the degree of charge and orbital ordering in this manganite is weaker than the charge ordering in three dimensional perovskite manganites. A TN=170K a type-A antiferromagnetism (AF) develops and competes with the charge ordering, that eventually melts below T*=100K. High resolution diffraction measurements suggest that that CO- and AF-states do not coincide within the same region in the material but rather co-exist as separate phases. The transition to type-A antiferromagnetism at lower temperatures is characterized by the competition between these two phases.Comment: 9 pages, 6 figure

    Formation of topological defects in gauge field theories

    Get PDF
    When a symmetry gets spontaneously broken in a phase transition, topological defects are typically formed. The theoretical picture of how this happens in a breakdown of a global symmetry, the Kibble-Zurek mechanism, is well established and has been tested in various condensed matter experiments. However, from the viewpoint of particle physics and cosmology, gauge field theories are more relevant than global theories. In recent years, there have been significant advances in the theory of defect formation in gauge field theories, which make precise predictions possible, and in experimental techniques that can be used to test these predictions in superconductor experiments. This opens up the possibility of carrying out relatively simple and controlled experiments, in which the non-equilibrium phase transition dynamics of gauge field theories can be studied. This will have a significant impact on our understanding of phase transitions in the early universe and in heavy ion collider experiments. In this paper, I review the current status of the theory and the experiments in which it can be tested.Comment: Review article, 43 pages, 7 figures. Minor changes, some references added. Final version to appear in IJMP

    AAV-mediated ERdj5 overexpression protects against P23H rhodopsin toxicity

    Get PDF
    Rhodopsin misfolding caused by the P23H mutation is a major cause of autosomal dominant retinitis pigmentosa (adRP), to date there are no effective treatments for adRP. The BiP co-chaperone and reductase ERdj5 (DNAJC10) is part of the ER quality control machinery and previous studies have shown that overexpression of ERdj5 in vitro enhanced the degradation of P23H rhodopsin; whereas knockdown of ERdj5 increased P23H rhodopsin ER retention and aggregation. Here, we investigated the role of ERdj5 in photoreceptor homeostasis in vivo by using an Erdj5 knock-out mouse crossed with the P23H knock-in mouse, and by adeno associated viral (AAV) vector-mediated gene augmentation of ERdj5 in P23H-3 rats. Electroretinogram (ERG) and optical coherence tomography (OCT) of Erdj5−/− and P23H+/−:Erdj5−/− mice showed no effect of ERdj5 ablation on retinal function or photoreceptor survival. Rhodopsin levels and localisation were similar to those of control animals at a range of time points. By contrast, when AAV2/8-ERdj5-HA was subretinally injected into P23H-3 rats, analysis of the full field ERG suggested that overexpression of ERdj5 reduced visual function loss 10 weeks post-injection. This correlated with a significant preservation of photoreceptor cells at 4 and 10 weeks post-injection. Assessment of the outer nuclear layer (ONL) morphology showed preserved ONL thickness and reduced rhodopsin retention in the ONL in the injected superior retina. Overall, these data suggest that manipulation of the ER quality control and ERAD factors to promote mutant protein degradation could be beneficial for the treatment of adRP caused by mutant rhodopsin

    A narrow, edge-on disk resolved around HD 106906 with SPHERE

    Get PDF
    HD~106906AB is so far the only young binary system around which a planet has been imaged and a debris disk evidenced thanks to a strong IR excess. As such, it represents a unique opportunity to study the dynamics of young planetary systems. We aim at further investigating the close (tens of au scales) environment of the HD~106906AB system. We used the extreme AO fed, high contrast imager SPHERE recently installed on the VLT to observe HD~106906. Both the IRDIS imager and the Integral Field Spectrometer were used. We discovered a very inclined, ring-like disk at a distance of 65~au from the star. The disk shows a strong brightness asymmetry with respect to its semi-major axis. It shows a smooth outer edge, compatible with ejection of small grains by the stellar radiation pressure. We show furthermore that the planet's projected position is significantly above the disk's PA. Given the determined disk inclination, it is not excluded though that the planet could still orbit within the disk plane if at a large separation (2000--3000 au). We identified several additional point sources in the SPHERE/IRDIS field-of-view, that appear to be background objects. We compare this system with other debris disks sharing similarities, and we briefly discuss the present results in the framework of dynamical evolution.Comment: 7 pages, 6 figures, accepted by Astronomy & Astrophysic
    corecore