Charge-lattice fluctuations are observed in the layered perovskite manganite
LaSr2Mn2O7 by Raman spectroscopy as high as 340 K and with decreasing
temperature they become static and form a charge ordered (CO) phase below
TCO=210 K. In the static regime, superlattice reflections are observed through
neutron and x-ray diffraction with a propagation vector (h+1/4,k-1/4,l).
Crystallographic analysis of the CO state demonstrates that the degree of
charge and orbital ordering in this manganite is weaker than the charge
ordering in three dimensional perovskite manganites. A TN=170K a type-A
antiferromagnetism (AF) develops and competes with the charge ordering, that
eventually melts below T*=100K. High resolution diffraction measurements
suggest that that CO- and AF-states do not coincide within the same region in
the material but rather co-exist as separate phases. The transition to type-A
antiferromagnetism at lower temperatures is characterized by the competition
between these two phases.Comment: 9 pages, 6 figure