207 research outputs found

    Volume change behavior of phosphogypsum treated clayey soils contaminated with inorganic acids – a micro level study

    Get PDF
    Soils exhibit undesirable volume changes when exposed to high concentrations of acids, which is manifested most frequently in the beds of foundations of industrial establishments associated with their production or use. However, control of this phenomenon has received less attention than it deserves. This paper aims to investigate the mineralogical and micro-structural changes occurred during the volume change behavior of phosphogypsum treated clayey soils contaminated with sulfuric acid and phosphoric acid solutions. Oedometer test results showed high swelling and low compressibility for acid contaminated soils than that of water. The change in microstructure towards flocculated fabric along with mineralogical transformations are responsible for the volume changes in soils. The mineralogical changes that affected the volume change behavior are discussed with FT-IR, XRD and SEM analysis. Phosphogypsum treatment was found to be effective in controlling volume changes in soils with phosphoric acid, whereas in the case of sulfuric acid found to be futile

    An enclosed in-gel PCR amplification cassette with multi-target, multi-sample detection for platform molecular diagnostics

    Get PDF
    This work describes a self-contained, simple, disposable, and inexpensive gel capillary cassette for DNA amplification in near point of care settings. The cassette avoids the need for pumps or valves during raw sample delivery or polymerase chain reaction (PCR) amplification steps. The cassette contains capillary reaction units that can be stored at room temperature for up to 3 months. The current cassette configuration format can simultaneously tests up to 16 patients for two or more targets, accommodates different sample types on the same cassette, has integrated positive and negative controls and allows flexibility for multiple geometries. PCR reagents in the cassette are desiccated to allow storage at room temperature with rehydration by raw sample at the time of testing. The sample is introduced to the cassette via a transfer pipette simply by capillary force. DNA amplification was carried out in a portable prototype instrument for PCR thermal cycling with fluorescence detection of amplified products by melt curve analysis. To demonstrate performance, raw genital swabs and urine were introduced to the same cassette to simultaneously detect four sexually transmitted infections. Herpes Simplex Viruses (HSV-1 and HSV-2) were detected from raw genital swabs. Ureaplasma Urealyticum (UU) and Mycoplasma Homonis (MH) were detected from raw urine. Results for multiple patients were obtained in as little as 50'. This platform allows multiparameter clinical testing with a pre-assembled cassette that requires only the introduction of raw sample. Modification of the prototype device to accommodate larger cassettes will ultimately provide high throughput simultaneous testing of even larger numbers of samples for many different targets, as is required for most clinical applications. Combinations of wax and/or polymer cassettes holding capillary reaction units are feasible. The components of the cassette are suited to mass production and robotic assembly to produce a readily manufactured disposable reaction cassette that can be configured for disease-specific testing panels. Rapid testing with a disposable reaction cassette on an inexpensive instrument will permit on the spot evaluation of patients in the clinic for faster medical decision-making and more informed therapeutic choices

    Machine Learning Heuristics on Gingivobuccal Cancer Gene Datasets Reveals Key Candidate Attributes for Prognosis

    Get PDF
    Delayed cancer detection is one of the common causes of poor prognosis in the case of many cancers, including cancers of the oral cavity. Despite the improvement and development of new and efficient gene therapy treatments, very little has been carried out to algorithmically assess the impedance of these carcinomas. In this work, from attributes or NCBI’s oral cancer datasets, viz. (i) name, (ii) gene(s), (iii) protein change, (iv) condition(s), clinical significance (last reviewed). We sought to train the number of instances emerging from them. Further, we attempt to annotate viable attributes in oral cancer gene datasets for the identification of gingivobuccal cancer (GBC). We further apply supervised and unsupervised machine learning methods to the gene datasets, revealing key candidate attributes for GBC prognosis. Our work highlights the importance of automated identification of key genes responsible for GBC that could perhaps be easily replicated in other forms of oral cancer detection.publishedVersionPeer reviewe

    Genome-wide association study for type 2 diabetes in Indians identifies a new susceptibility locus at 2q21

    Get PDF
    Meta-AnalysisThis is the final version of the article. Available from the American Diabetes Association via the DOI in this record.Indians undergoing socioeconomic and lifestyle transitions will be maximally affected by epidemic of type 2 diabetes (T2D). We conducted a two-stage genome-wide association study of T2D in 12,535 Indians, a less explored but high-risk group. We identified a new type 2 diabetes-associated locus at 2q21, with the lead signal being rs6723108 (odds ratio 1.31; P = 3.32 × 10⁻⁹). Imputation analysis refined the signal to rs998451 (odds ratio 1.56; P = 6.3 × 10⁻¹²) within TMEM163 that encodes a probable vesicular transporter in nerve terminals. TMEM163 variants also showed association with decreased fasting plasma insulin and homeostatic model assessment of insulin resistance, indicating a plausible effect through impaired insulin secretion. The 2q21 region also harbors RAB3GAP1 and ACMSD; those are involved in neurologic disorders. Forty-nine of 56 previously reported signals showed consistency in direction with similar effect sizes in Indians and previous studies, and 25 of them were also associated (P < 0.05). Known loci and the newly identified 2q21 locus altogether explained 7.65% variance in the risk of T2D in Indians. Our study suggests that common susceptibility variants for T2D are largely the same across populations, but also reveals a population-specific locus and provides further insights into genetic architecture and etiology of T2D.The major funding for this work comes from Council for Scientific and Industrial Research, Government of India, in the form of the grant “Diabetes mellitus—New drug discovery R&D, molecular mechanisms, and genetic and epidemiological factors” (NWP0032-19). R.T. received a postdoctoral fellowship from the Fogarty International Center and the Eunice Kennedy Shriver National Institute of Child Health and Human Development at the National Institutes of Health (D43-HD-065249)

    Common Variants in CRP and LEPR Influence High Sensitivity C-Reactive Protein Levels in North Indians

    Get PDF
    BACKGROUND: High sensitivity C-reactive protein (hsCRP) levels are shown to be influenced by genetic variants in Europeans; however, little is explored in Indian population. METHODS: Herein, we comprehensively evaluated association of all previously reported genetic determinants of hsCRP levels, including 18 cis (proximal to CRP gene) and 73 trans-acting (distal to CRP gene) variants in 4,200 North Indians of Indo-European ethnicity. First, we evaluated association of 91 variants from 12 candidate loci with hsCRP levels in 2,115 North Indians (1,042 non-diabetic subjects and 1,073 patients with type 2 diabetes). Then, cis and trans-acting variants contributing maximally to hsCRP level variation were further replicated in an independent 2,085 North Indians (1,047 patients with type 2 diabetes and 1,038 non-diabetic subjects). RESULTS: We found association of 12 variants from CRP, LEPR, IL1A, IL6, and IL6R with hsCRP levels in non-diabetic subjects. However, only rs3093059-CRP [β = 0.33, P = 9.6×10⁻⁵] and the haplotype harboring rs3093059 risk allele [β = 0.32 µg/mL, P = 1.4×10⁻⁴/P(perm) = 9.0×10⁻⁴] retained significance after correcting for multiple testing. The cis-acting variant rs3093059-CRP had maximum contribution to the variance in hsCRP levels (1.14%). Among, trans-acting variants, rs1892534-LEPR was observed to contribute maximally to hsCRP level variance (0.59%). Associations of rs3093059-CRP and rs1892534-LEPR were confirmed by replication and attained higher significance after meta-analysis [β(meta) = 0.26/0.22; P(meta) = 4.3×10⁻⁷/7.4×10⁻³ and β(meta) = -0.15/-0.12; P(meta) = 2.0×10⁻⁶/1.6×10⁻⁶ for rs3093059 and rs1892534, respectively in non-diabetic subjects and all subjects taken together]. CONCLUSION: In conclusion, we identified rs3093059 in CRP and rs1892534 in LEPR as major cis and trans-acting contributor respectively, to the variance in hsCRP levels in North Indian population

    Disruption of Mouse Cenpj, a Regulator of Centriole Biogenesis, Phenocopies Seckel Syndrome

    Get PDF
    Disruption of the centromere protein J gene, CENPJ (CPAP, MCPH6, SCKL4), which is a highly conserved and ubiquitiously expressed centrosomal protein, has been associated with primary microcephaly and the microcephalic primordial dwarfism disorder Seckel syndrome. The mechanism by which disruption of CENPJ causes the proportionate, primordial growth failure that is characteristic of Seckel syndrome is unknown. By generating a hypomorphic allele of Cenpj, we have developed a mouse (Cenpjtm/tm) that recapitulates many of the clinical features of Seckel syndrome, including intrauterine dwarfism, microcephaly with memory impairment, ossification defects, and ocular and skeletal abnormalities, thus providing clear confirmation that specific mutations of CENPJ can cause Seckel syndrome. Immunohistochemistry revealed increased levels of DNA damage and apoptosis throughout Cenpjtm/tm embryos and adult mice showed an elevated frequency of micronucleus induction, suggesting that Cenpj-deficiency results in genomic instability. Notably, however, genomic instability was not the result of defective ATR-dependent DNA damage signaling, as is the case for the majority of genes associated with Seckel syndrome. Instead, Cenpjtm/tm embryonic fibroblasts exhibited irregular centriole and centrosome numbers and mono- and multipolar spindles, and many were near-tetraploid with numerical and structural chromosomal abnormalities when compared to passage-matched wild-type cells. Increased cell death due to mitotic failure during embryonic development is likely to contribute to the proportionate dwarfism that is associated with CENPJ-Seckel syndrome

    Partial inhibition and bilevel optimization in flux balance analysis

    Get PDF
    Motivation: Within Flux Balance Analysis, the investigation of complex subtasks, such as finding the optimal perturbation of the network or finding an optimal combination of drugs, often requires to set up a bilevel optimization problem. In order to keep the linearity and convexity of these nested optimization problems, an ON/OFF description of the effect of the perturbation (i.e. Boolean variable) is normally used. This restriction may not be realistic when one wants, for instance, to describe the partial inhibition of a reaction induced by a drug.Results: In this paper we present a formulation of the bilevel optimization which overcomes the oversimplified ON/OFF modeling while preserving the linear nature of the problem. A case study is considered: the search of the best multi-drug treatment which modulates an objective reaction and has the minimal perturbation on the whole network. The drug inhibition is described and modulated through a convex combination of a fixed number of Boolean variables. The results obtained from the application of the algorithm to the core metabolism of E.coli highlight the possibility of finding a broader spectrum of drug combinations compared to a simple ON/OFF modeling.Conclusions: The method we have presented is capable of treating partial inhibition inside a bilevel optimization, without loosing the linearity property, and with reasonable computational performances also on large metabolic networks. The more fine-graded representation of the perturbation allows to enlarge the repertoire of synergistic combination of drugs for tasks such as selective perturbation of cellular metabolism. This may encourage the use of the approach also for other cases in which a more realistic modeling is required. \ua9 2013 Facchetti and Altafini; licensee BioMed Central Ltd

    pcrEfficiency: a Web tool for PCR amplification efficiency prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Relative calculation of differential gene expression in quantitative PCR reactions requires comparison between amplification experiments that include reference genes and genes under study. Ignoring the differences between their efficiencies may lead to miscalculation of gene expression even with the same starting amount of template. Although there are several tools performing PCR primer design, there is no tool available that predicts PCR efficiency for a given amplicon and primer pair.</p> <p>Results</p> <p>We have used a statistical approach based on 90 primer pair combinations amplifying templates from bacteria, yeast, plants and humans, ranging in size between 74 and 907 bp to identify the parameters that affect PCR efficiency. We developed a generalized additive model fitting the data and constructed an open source Web interface that allows the obtention of oligonucleotides optimized for PCR with predicted amplification efficiencies starting from a given sequence.</p> <p>Conclusions</p> <p>pcrEfficiency provides an easy-to-use web interface allowing the prediction of PCR efficiencies prior to web lab experiments thus easing quantitative real-time PCR set-up. A web-based service as well the source code are provided freely at <url>http://srvgen.upct.es/efficiency.html</url> under the GPL v2 license.</p

    Connector Inversion Probe Technology: A Powerful One-Primer Multiplex DNA Amplification System for Numerous Scientific Applications

    Get PDF
    We combined components of a previous assay referred to as Molecular Inversion Probe (MIP) with a complete gap filling strategy, creating a versatile powerful one-primer multiplex amplification system. As a proof-of-concept, this novel method, which employs a Connector Inversion Probe (CIPer), was tested as a genetic tool for pathogen diagnosis, typing, and antibiotic resistance screening with two distinct systems: i) a conserved sequence primer system for genotyping Human Papillomavirus (HPV), a cancer-associated viral agent and ii) screening for antibiotic resistance mutations in the bacterial pathogen Neisseria gonorrhoeae. We also discuss future applications and advances of the CIPer technology such as integration with digital amplification and next-generation sequencing methods. Furthermore, we introduce the concept of two-dimension informational barcodes, i.e. “multiplex multiplexing padlocks” (MMPs). For the readers' convenience, we also provide an on-line tutorial with user-interface software application CIP creator 1.0.1, for custom probe generation from virtually any new or established primer-pairs
    corecore