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Abstract: Delayed cancer detection is one of the common causes of poor prognosis in the case of
many cancers, including cancers of the oral cavity. Despite the improvement and development of
new and efficient gene therapy treatments, very little has been carried out to algorithmically assess
the impedance of these carcinomas. In this work, from attributes or NCBI’s oral cancer datasets,
viz. (i) name, (ii) gene(s), (iii) protein change, (iv) condition(s), clinical significance (last reviewed).
We sought to train the number of instances emerging from them. Further, we attempt to annotate
viable attributes in oral cancer gene datasets for the identification of gingivobuccal cancer (GBC). We
further apply supervised and unsupervised machine learning methods to the gene datasets, revealing
key candidate attributes for GBC prognosis. Our work highlights the importance of automated
identification of key genes responsible for GBC that could perhaps be easily replicated in other forms
of oral cancer detection.

Keywords: oral cancer; machine learning; gene prioritization; genomic datasets; data mining

1. Introduction

Oral cavity cancer (OCC) is the tenth most common malignant tumor in the world
and the third most common in southeast Asia. The common subsite recorded in OCC in
third world countries, especially in Indian communities, is gingivobuccal cancer (GBC)
constituting about 40% of all cases, whereas the cases diagnosed in the western world are
about 10% [1]. They are usually associated with delayed clinical detection, poor prognosis,
absence of specific biomarkers for the disease, and expensive therapeutic alternatives [2].
The GBC comprises buccal mucosa, gingivobuccal sulcus, alveolus, and retromolar area
cancers and is commonly seen in younger patients. While certain precancerous conditions
and lesions such as submucous fibrosis, leukoplakia, and erythroplakia are known causes,
dietary deficiencies such as iron, Vitamins A, C, and E are associated with oral cancers. The
processes such as segregation of chromosomes, genomic copy number, loss of heterozygos-
ity, telomere stabilities, regulations of cell-cycle checkpoints, DNA damage repairs, and
defects in Notch signaling pathways are involved in causing oral cancer [3]. Malignant
odontogenic tumors emanate de novo within jawbones, from epithelium contained within
cyst linings, or from the malignant transformation of benign odontogenic tumors. The
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lesions most commonly are the primary intraosseous carcinomas, including the mucoepi-
dermoid carcinoma arising within the bone and the ameloblastic carcinoma [4]. The WHO
classification of odontogenic carcinoma dissects malignant ameloblastoma from primary
intraosseous carcinoma [5]. As diagnosis is entrenched by a biopsy of the jaw lesion, the
definitive analysis prospective is of a usually poor outcome. Early signs and symptoms in-
clude soreness or pain in jaws, which could extend through chewing/swallowing followed
by loosening teeth and bleeding from the mouth. While a good examination is heralded by
visualization in the buccal mucosa, the current high-end transoral robotic surgeries [TORS],
besides vaccines, have been in use [6].

Over the last decade, several treatments have been utilized with the consistent use
of effective gene therapies. Discoveries about how changes in the DNA of cells in the
oral cavity and oropharynx cause these cells to become cancerous are being applied to
experimental treatments intended to reverse these changes. For example, clinical trials
are testing whether it is possible to replace abnormal tumor suppressor genes (such as
the p53 gene) of oral cancer cells with a normal copy to restore normal growth control [7].
Machine learning is a computational method that improves performance to make accurate
predictions when data analysis and statistical methods do not have enough information
about the underlying distribution of data [8]. Furthermore, from our previous experience,
machine learning algorithms have been applied to various fields in genomics [9], health-
care [10], computer vision [11], etc. As the applications of these methods have assisted the
precision medicine scale, this would eventually bridge the gaps in oral squamous cell carci-
noma [12]. Ahmed et al. [13] investigated these methods from the Artificial Intelligence (AI)
dental imaging perspective. The metadata constituting characteristics, study and control
groups were extracted for feature selection paradigms, which resulted in understanding
the implications of the OSCC. Nevertheless, AI could predict failures to assess the clinical
performance in such carcinomas [13]. Through the use of statistical methods, the variables
(weights) in the algorithm undergo systematic updates representing the distribution of the
training data during the training phase. The test phase presents unique, unseen data to the
same algorithm weights and makes a classification/prediction for this new data point. As
these algorithms can help uncover key insights within data mining projects, subsequent
decision-making drives can ideally impact key growth metrics.

Oral cancer prognosis is one of the burgeoning problems, and our work employing
machine learning heuristics could lay emphasis on piloting candidate biomarkers. As
diagnosis could be better aided for prognosis and theranostics, survival and therapies must
be in place, and despite strategic improvements in these areas, this is still in infancy. Various
phenotypes associated with oral cancer, such as oral squamous cell carcinoma (OSCC)
and early-stage diagnosis, are still in the realm of early-stage detection. Alabi et al. [12]
have reviewed the challenges and examined the need for deep-learning heuristics for
the proper management of oral cancer. In the present work, we aimed to identify a key
candidate signature for oral cancer/gingivobuccal phenotype from various datasets that are
mined from NCBI, wherein these could be considered as prognostic signature biomarkers.
We employed a mixture of supervised and unsupervised algorithms and attempted to
understand key attributes for prognosis of oral cancer. While supervised methods are much
simpler and straightforward to use for our study, we wanted to briefly touch upon the
usefulness of unsupervised methods for motivating further research with this combination
of data. A detailed gist of results employing a Support Vector Machine (SVM), Naïve Bayes,
Decision trees, Multi-Layer Perceptron, Logistic Regression, and K Means (unsupervised)
are discussed.

2. Materials and Methods
2.1. Datasets and Transformation

We used datasets for four genes related to oral cancer: PIK3CA, KRAS, TP53 and
Gingival. The dataset from NCBI (www.ncbi.nlm.nih.gov, last accessed on 27 October 2022)
searches was screened with the following five features: (i) name, (ii) gene(s), (iii) protein
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change, (iv) condition(s), clinical significance (last reviewed). TP53 and Gingival have an
additional Review Status feature. The number of samples varies for each dataset: PIK3CA
has 544 instances, KRAS has 330 instances, TP53 has 2186 instances, and Gingival has 2107
instances (Table S1; Figure 1).
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We transformed alphanumeric features into categorical features for the application of
the following Machine Learning Algorithms (as given below in the section Classifier Design
and Training). The first instance of data values of protein change, condition(s), clinical
significance (last reviewed), and review status was used. Then, the data values of features
such as gene(s), protein change, condition(s), clinical significance (last reviewed), and
review status were converted into numeric keys using Preprocessing and Transformation
classes in Scikit-learn. Binary and numeric weightages were assigned to each feature,
including protein change, condition(s), clinical significance (last reviewed), and review
status to evaluate the performance based on data annotations.

2.2. Experiments

We performed four experiments for PIK3CA and KRAS datasets and six experiments
for TP53 and Gingival using different combinations of features. The following six experi-
ments separately used one of the following four features: (i) all the features in a dataset,
(ii) only binary features, (iii) only non-binary features, (iv) all features except review status
(for datasets (TP53, Gingival) that contains review status as a feature), (v) only non-binary
features with no review status (for datasets (TP53, Gingival) that contains review status as
a feature), and (vi) only binary features with no review status (for datasets (TP53, Gingival)
that contains review status as a feature).

2.3. Classifier Design and Training

We used six major classifiers to train and test the model: (i) Support Vector Machine,
(ii) Naïve Bayes, (iii) Decision trees, (iv) Perceptron, (v) Logistic Regression, and (vi) K
Means (unsupervised). We randomly split the dataset to use 80% for training and 20% for
testing. We used off-the-shelf algorithms implemented in Scikit-learn for these experiments
and used other libraries, such as NumPy, Pandas, and Matplotlib available in Python 3.10.7.
While unsupervised algorithms are hard to implement on such data, we used only K Means
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for a flavor of unsupervised learning. Further analyses with algorithms, such as K Medoids,
PCA, etc., are left for future work.

2.4. Performance Evaluation

Evaluating the performance of learning algorithms is a central aspect of machine
learning. We used an 80-20 train-test split to test the performance of the predictive and
classification models. To mitigate the overfitting problem, the following measures were
used to evaluate the performance of six classifiers based on accuracy, which is defined as
the percentage of correct predictions for the test data. It can be calculated by dividing the
number of correct predictions by the number of total predictions. The measure is defined
as follows:

Accuracy = [TP + TN]/[TP + FN + FP + TN]

where TP—True Positives (positive samples classified correctly as positive), TN—True Neg-
atives (negative samples classified correctly as negative), FP—False Positives (negative sam-
ples predicted wrongly as positive), and FN—False Negatives (positive samples predicted
wrongly as negative). The precision and recall were achieved with inherent accuracy.

3. Results and Discussion
3.1. PIK3CA among the Select Genes with Highest Accuracy

One of the interesting findings we attempted in our study was to identify gene datasets
that are significantly enriched from machine learning heuristics. We observe that there is
a significant amount of attribute fitting with instances taken up from all datasets. While
all instances were used and compared across all algorithms to further gain insight into
this, the accuracies were tabulated accordingly (Figure 2; Supplementary Table S1). For
PIK3CA, experiment (i) accuracy varies between 78% (decision tree) and 48% (Naïve Bayes).
For experiment (ii), accuracy varies between 67% (MLP) and 41% (Naïve Bayes). For
experiment (iii), accuracy varies between 77% (decision tree) and 44% (Naïve Bayes). On
the other hand, for KRAS, experiment (i) accuracy varies between 62% (decision tree) and
27% (K Means). For experiment (ii), accuracy varies between 62% (decision tree) and 17%
(Naïve Bayes). For experiment (iii), accuracy varies between 53% (decision tree) and 18%
(Naïve Bayes). Whereas TP53 showed variable changes, for experiment (i) accuracy varies
between 61% (MLP) and 35% (K Means). For experiment (ii), accuracy varies between 56%
(SVM, MLP and decision tree) and 35% (K Means). For experiment (iii), accuracy varies
between 55% (MLP) and 8% (Naïve Bayes). For experiment (iv), accuracy varies between
57% (MLP) and 34% (K Means). Additionally, for experiment (v), accuracy varies between
50% (decision tree) and 21% (K Means). For experiment (vi), accuracy varies between 51%
(decision tree, logistic regression, MLP, SVM) and 35% (K Means). For gingival datasets,
experiment (i), accuracy varies between 63% (MLP) and 29% (K Means); for experiment
(ii), accuracy varies between 49% (MLP) and 29% (K Means); for experiment (iii), accuracy
varies between 63% (decision tree) and 29% (K Means); for experiment (iv), accuracy varies
between 54% (MLP) and 29% (K Means); for experiment (v), accuracy varies between
52% (MLP) and 29% (K Means); and for experiment (vi), accuracy varies between 40%
(decision tree, logistic regression, MLP, SVM) and 30% (K Means clustering). From the
above results, it is evident that only experiment (i) is shown to have the highest accuracy
when compared with other experiments from (ii) to (vi) (Table 1). We present accuracies
with 5-fold cross-validation using different algorithms on the 4 genes in Table 2.
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Table 1. ML Accuracies for each Oral Cancer Gene.

ML Algorithms [Accuracies %]

SVM MLP Logistic
Regression Naïve Byes Decision

Tree
K-Means

Unsupervised

Genes

PIK3CA 71 66 56 48 78 48

KRAS 41 55 39 17 62 27

TP53 56 63 54 48 58 29

Gingival 53 61 42 54 53 35

Table 2. Accuracies through 5-fold classification on different algorithms for the 4 genes.

Genes SVM MLP Logistic
Regression

Naïve
Bayes

Decision
Tree K-Mean

PIK3CA 88% 83% 76% 100% 87% 21%
KRAS 82% 70% 74% 19% 92% 8%
TP53 51% 57% 63% 89% 57% 53%

Gingival 47% 48% 53% 95% 45% 55%

What we aimed to achieve from our pilot study is to employ gene selection and ask
whether or not the lesser-known changes in attributes can, by choice, be ignored for further
prognosis. In other words, in nature, are there any genes that are repetitively expressed with
inherent changes attempted in our machine learning heuristics [14]. The virtual experiments
on ML heuristics that we employed set a base for oral cancer prognosis. However, there
is a dearth of well-annotated or informative attributes, which is a major limitation of our
work. Theoretically, with more instances and genes segregated from the attributes, we
could have received a better performance and overcome the overfitting problem, albeit
the fact that our finding of the relevant four genes augments the hypothesis that it may
not always be true. Our experiments and framework can further be extended to reveal
the effects of key attributes from genetic data and be applied to predict outcomes, such
as the chances of survival, recurrence, etc. On the other hand, some work has been seen
around survival risk stratification [15] and survival prediction [16] using similar machine
learning-based methods. The majority of these works have patient datasets collected for
several years. Even as these yield bona fide results, they could be prone to biases. We
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found the application of Principal Component Analysis (PCA) and other techniques for
data reduction to be prevalent in multiple studies.

Initially, we ran the experiments with the same data splits and the same machine
learning algorithms using the java-based package Weka [17,18]. While we found the results
to be overfitting to our data, we speculate that Weka assigns every non-numeric instance
to be a unique key and processes them individually. For example, when A-B is arranged
as B-A in the dataset (without ordering-sensitive features), Weka is unable to break them
and considers them as two keys instead of one. A clear limitation for this approach is
indicative of certain data types, as it also relies heavily on data annotation. Having data
annotated (manual and program) to account for such orderings, we find that our models do
not overfit and perform better, which could be the plausible reason why many annotated
cancer datasets have. This also agrees that the scarcity of publicly available image datasets
may impede early patho-significant diagnoses for cancers taking the machine learning
paradigm [19]. Although Kaggle has some datasets (https://www.kaggle.com/datasets/
shivam17299/oral-cancer-lips-and-tongue-imageslast, accessed on 30 October 2022), the
size is limited and might be underfitting in the present context. On the other hand, to
overcome the overfitting and failed model as we postulated, deep-learning models could
bring great promise for an accurate prognosis if in case the datasets have tumorigenic
data, infiltrating lymphocytes and multiclass labeling, which can herald predicting disease
states [13]. Such data could then be divided into risk groups and then differentiate the data
from a good to a poor prognosis. Having said this, deep-learning clubbed with precise
detection may then be used to identify oral cancer datasets, albeit the fact that there must
be high-end computability to identify multidimensional datasets.

3.2. Scatter Plot for K-Means

We present a scatter plot for PIK3CA using the features ProteinChange_keys and
Binary Scoring CS. We show five classes represented by colors red, blue, green, yellow, cyan,
while centroids are represented by ‘X’. The classes represented by red, yellow, blue, and cyan
form tight clusters around centroids, showing that the clusters capture the underlying data
distribution well, while the cluster represented by green is slightly far from the calculated
centroid (Figure 3). Additional scatter plots are provided in the Supplementary Materials.
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Given the success of multimodal algorithms [20], we believe our analysis can be
further strengthened by using microscopic images of cells from the buccal cavity alongside
annotated genetic data. Using electron microscopy and image segmentation algorithms,
it is now possible to segment the image up to the cellular level, precisely pinpointing
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the areas of carcinoma. Such precise positions can help prevent the pitfalls of annotation
errors, making our analysis more robust. We speculate that such analysis can also aid in
predicting the early onset of cancers [21,22]. Taken together, our analyses could provide
early roads for prognosis where these genes could aid as key candidates. As diagnosis
could be better aided for prognosis and theranostics, survival and therapies must be in
place, and despite strategic improvements in these areas, this is still in infancy. Machine
learning and artificial intelligence (AI) aided methods have enhanced early detection in
reducing mortality and morbidity. Indefatigably, there are not many metadata-based
machine learning heuristics assessing the impedance of these carcinomas. In summary, we
presented a machine learning-based approach to predict the gene dataset, revealing key
candidate attributes for GBC prognosis.

4. Conclusions

Machine learning and Artificial Intelligence (AI) aided methods have enhanced early
detection in reducing mortality and morbidity. Indefatigably, there are not many metadata-
based machine learning heuristics assessing the impedance of these oral carcinomas. In
summary, we presented a machine learning-based approach to predict the gene dataset,
which reveals key candidate attributes for GBC prognosis. We have attempted to fill these
gaps by performing and labeling classes, and accurate identification of viable attributes
for such cancers. Furthermore, we found that deterministic methods perform well with
limited data. In contrast, non-deterministic methods excel in performance with large
datasets, wherein supervised learning methods perform better than unsupervised methods.
Nonetheless, our experiments had more supervised methods than unsupervised ones,
which we wanted to establish the use case for such an analysis. We argue that a multitude
of unsupervised and semi-supervised methods might be able to better model these data
distributions that seldom have accurate annotations. However, this may be due to the
lack of machine learning heuristics which could be used as models and vice versa for a
better-modeled framework.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes13122379/s1. Table S1: Comparison of all the algorithms with
the accuracies were tabulated accordingly. Figure S1: Additional scatter plots of all results tabulated.
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