33 research outputs found

    Collagen-based fibrillar multilayer films cross-linked by a natural agent.

    Get PDF
    Surface functionalization plays an important role in the design of biomedical implants, especially when layer forming cells, such as endothelial or epithelial cells, are needed. In this study, we define a novel nanoscale surface coating composed of collagen/alginate polyelectrolyte multilayers and cross-linked for stability with genipin. This buildup follows an exponential growth regime versus the number of deposition cycles with a distinct nanofibrillar structure that is not damaged by the cross-linking step. Stability and cell compatibility of the cross-linked coatings were studied with human umbilical vein endothelial cells. The surface coating can be covered by a monolayer of vascular endothelial cells within 5 days. Genipin cross-linking renders the surface more suitable for cell attachment and proliferation compared to glutaraldehyde (more conventional cross-linker) cross-linked surfaces, where cell clumps in dispersed areas were observed. In summary, it is possible with the defined system to build fibrillar structures with a nanoscale control of film thickness, which would be useful for in vivo applications such as inner lining of lumens for vascular and tracheal implants.journal articleresearch support, non-u.s. gov't2012 Jul 092012 06 13importe

    Modification of macroporous titanium tracheal implants with biodegradable structures: tracking in vivo integration for determination of optimal in situ epithelialization conditions.

    Get PDF
    Previously, we showed that macroporous titanium implants, colonized in vivo together with an epithelial graft, are viable options for tracheal replacement in sheep. To decrease the number of operating steps, biomaterial-based replacements for epithelial graft and intramuscular implantation were developed in the present study. Hybrid microporous PLLA/titanium tracheal implants were designed to decrease initial stenosis and provide a surface for epithelialization. They have been implanted in New Zealand white rabbits as tracheal substitutes and compared to intramuscular implantation samples. Moreover, a basement membrane like coating of the implant surface was also designed by Layer-by-Layer (LbL) method with collagen and alginate. The results showed that the commencement of stenosis can be prevented by the microporous PLLA. For determination of the optimum time point of epithelialization after implantation, HPLC analysis of blood samples, C-reactive protein (CRP), and Chromogranin A (CGA) analyses and histology were carried out. Following 3 weeks the implant would be ready for epithelialization with respect to the amount of tissue integration. Calcein-AM labeled epithelial cell seeding showed that after 3 weeks implant surfaces were suitable for their attachment. CRP readings were steady after an initial rise in the first week. Cross-linked collagen/alginate structures show nanofibrillarity and they form uniform films over the implant surfaces without damaging the microporosity of the PLLA body. Human respiratory epithelial cells proliferated and migrated on these surfaces which provided a better alternative to PLLA film surface. In conclusion, collagen/alginate LbL coated hybrid PLLA/titanium implants are viable options for tracheal replacement, together with in situ epithelialization.journal articleresearch support, non-u.s. gov't2012 Aug2012 03 02importe

    Nanostructured hollow tubes based on chitosan and alginate multilayers

    Get PDF
    The design and production of structures with nanometer-sized polymer ïŹ lms based on layer-by-layer (LbL) are of particular interest for tissue engineering since they allow the precise control of physical and biochemical cues of implantable devices. In this work, a method is developed for the preparation of nanostructured hollow multilayers tubes combining LbL and template leaching. The aim is to produce hollow tubes based on polyelectrolyte multilayer ïŹ lms with tuned physical-chemical properties and study their effects on cell behavior. The ïŹnal tubular structures are characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), microscopy, swelling, and mechanical tests, including dynamic mechanical analysis (DMA) in physiological simulated conditions. It is found that more robust ïŹlms could be produced upon chemical cross-linking with genipin. In particular, the mechanical properties conïŹ rms the viscoelastic properties and a storage and young modulus about two times higher. The water uptake decreases from about 390% to 110% after the cross-linking. The biological performance is assessed in terms of cell adhesion, viability, and proliferation. The results obtained with the cross-linked tubes demonstrate that these are more suitable structures for cell adhesion and spreading. The results suggest the potential of these structures to boost the development of innovative tubular structures for tissue engineering approaches.The authors acknowledge the financial support by the Portuguese Foundation for Science and Technology (FCT) through the doctoral and post-doctoral grants with the reference numbers SFRH/BD/81372/2011 (J.M.S.), SFRH/BD/61390/2009 (C.A.C.), SFRH/BD/73119/2010 (I.N.), and SFRH/BPD/489948/2008 (P.S.), respectively, co-financed by the Operational Human Potential Program (POPH) developed under the scope of the National Strategic Reference Framework (QREN) from the European Social Fund (FSE). The authors would also like to acknowledge the project novel smart and biomimetic materials for innovative regenerative medicine approaches (Ref.: RL1 - ABMR - NORTE-01-0124-FEDER-000016) co-financed by North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF)

    Collagen-based coatings for biomaterials functionalization

    No full text
    La fonctionnalisation des biomatĂ©riaux est une stratĂ©gie probante et prometteuse dĂ©veloppĂ©e pour favoriser l’intĂ©gration de biomatĂ©riaux dans un organisme vivant. Le dĂ©pĂŽt de films multicouches de polyĂ©lectrolytes est une mĂ©thode de fonctionnalisation de surfaces particuliĂšrement adaptĂ©e au recouvrement d’implants. Ces surfaces modifiĂ©es pourront ainsi interagir avec leur environnement biologique. Au cours de ce travail de thĂšse, nous avons dĂ©veloppĂ© un nouveau revĂȘtement, Ă  base de composĂ©s naturels, capable de recouvrir plusieurs types de surfaces. De plus, ces revĂȘtements originaux peuvent ĂȘtre utilisĂ©s pour orienter certains phĂ©nomĂšnes cellulaires. Dans la premiĂšre partie de ce travail de thĂšse, nous avons mis au point un nouveau systĂšme de films multicouches Ă  base de collagĂšne et d’alginate. La rĂ©ticulation chimique avec la gĂ©nipine, un agent naturel d’origine vĂ©gĂ©tale (Gardenia Jasminoide), stabilise ces constructions pour une utilisation en conditions physiologiques. Les Ă©tudes d’adhĂ©rence et de prolifĂ©ration de cellules endothĂ©liales humaines ont montrĂ© que ces revĂȘtements Ă  base de constituants naturels sont des supports adĂ©quats en vue d’applications biomĂ©dicales. Nous avons ensuite dĂ©posĂ© des films collagĂšne/alginate sur des implants en titane prĂ©cĂ©demment recouvert d’un gel microporeux en poly(acide lactique). Nous avons pu montrer que les films collagĂšne/alginate favorisent la prolifĂ©ration de cellules Ă©pithĂ©liales, ce qui permettrait une meilleure intĂ©gration des implants. Dans la deuxiĂšme partie de notre travail, nous avons dĂ©veloppĂ© une technique permettant d’obtenir des revĂȘtements et des membranes Ă  base de films multicouches collagĂšne/alginate ayant des structures fibrillaires orientĂ©es. L’alignement fibrillaire s’obtient par simple Ă©tirement des substrats Ă©lastiques en poly(dimĂ©thyl siloxane) (PDMS) sur lesquels sont dĂ©posĂ©s les revĂȘtements collagĂšne/alginate. La dĂ©formation longitudinale du substrat induit un alignement prĂ©fĂ©rentiel des fibrilles de collagĂšne du revĂȘtement. L’étude de l’influence du taux d’étirement sur l’alignement des fibres a montrĂ© qu’il Ă©tait possible de moduler cet alignement. Enfin, nous avons observĂ© que le comportement de diffĂ©rents types cellulaires (fibroblastes et astrocytes) est modifiĂ© par l’alignement fibrillaire. On note que les cellules s’alignent dans la mĂȘme direction que les fibrilles de collagĂšne. A l’évidence, l’organisation fibrillaire du revĂȘtement conditionne la gĂ©omĂ©trie de l’étalement cellulaire. Les cellules s’allongent lorsque les fibrilles sont alignĂ©es. De plus, il apparaĂźt que la direction des divisions cellulaires est guidĂ©e par la direction de l’alignement des fibrilles de collagĂšne dans le revĂȘtement Ă©tirĂ©. Cela signifie que les cellules sont guidĂ©es par les fibrilles de collagĂšne alignĂ©es.Biomaterial functionalization is a promising strategy developed to favor material implantation in a living organism. The deposition of polyelectrolyte multilayer films is a useful functionalization technique to coat implants. These modified surfaces may then interact with their biological environment. In this work, we developed new collagen-based coatings and membranes, able to cover several kinds of substrates. Moreover, these original coatings can either promote cell proliferation or guide cell alignment.In the first part of our work, we developed a new polyelectrolyte multilayer assembly made of collagen and alginate. Chemical cross-linking with a natural agent, genipin (extracted from Gardenia Jasminoide), renders the films stable in physiological conditions. Human endothelial cells adhere and proliferate well on these collagen-based coatings. Then, we functionalized macroporous poly(lactic acid) gels-coated titanium implants with collagen/alginate multilayer films to favor epithelial cell proliferation. We showed that cells adhere and proliferate better on collagen/alginate-coated implants. This shows the potential suitability of collagen/alginate coatings for a better integration of biomaterials.In the second part of our work we developed a new technique in order to align the fibrillar structure of collagen/alginate multilayer films and membranes. The principle is simple and versatile. It consists in stretching collagen/alginate multilayer film coated on PDMS substrates. This longitudinal deformation leads to the alignment of the collagen fibrils in the coating. Cell adhesion and proliferation (fibroblasts, astrocytes) is modified due to fibrils alignment. We showed that cells align along the direction of the collagen fibrils. Obviously, the fibrillar organization of the coatings influences cell adhesion geometry. Cells stretch out along aligned fibrils. Furthermore, it appears that cell divisions direction is guided by the direction of the collagen fibrils alignment in the stretched coatings

    RevĂȘtements Ă  base de collagĂšne pour la fonctionnalisation de biomatĂ©riaux

    No full text
    Biomaterial functionalization is a promising strategy developed to favor material implantation in a living organism. The deposition of polyelectrolyte multilayer films is a useful functionalization technique to coat implants. These modified surfaces may then interact with their biological environment. In this work, we developed new collagen-based coatings and membranes, able to cover several kinds of substrates. Moreover, these original coatings can either promote cell proliferation or guide cell alignment.In the first part of our work, we developed a new polyelectrolyte multilayer assembly made of collagen and alginate. Chemical cross-linking with a natural agent, genipin (extracted from Gardenia Jasminoide), renders the films stable in physiological conditions. Human endothelial cells adhere and proliferate well on these collagen-based coatings. Then, we functionalized macroporous poly(lactic acid) gels-coated titanium implants with collagen/alginate multilayer films to favor epithelial cell proliferation. We showed that cells adhere and proliferate better on collagen/alginate-coated implants. This shows the potential suitability of collagen/alginate coatings for a better integration of biomaterials.In the second part of our work we developed a new technique in order to align the fibrillar structure of collagen/alginate multilayer films and membranes. The principle is simple and versatile. It consists in stretching collagen/alginate multilayer film coated on PDMS substrates. This longitudinal deformation leads to the alignment of the collagen fibrils in the coating. Cell adhesion and proliferation (fibroblasts, astrocytes) is modified due to fibrils alignment. We showed that cells align along the direction of the collagen fibrils. Obviously, the fibrillar organization of the coatings influences cell adhesion geometry. Cells stretch out along aligned fibrils. Furthermore, it appears that cell divisions direction is guided by the direction of the collagen fibrils alignment in the stretched coatings.La fonctionnalisation des biomatĂ©riaux est une stratĂ©gie probante et prometteuse dĂ©veloppĂ©e pour favoriser l’intĂ©gration de biomatĂ©riaux dans un organisme vivant. Le dĂ©pĂŽt de films multicouches de polyĂ©lectrolytes est une mĂ©thode de fonctionnalisation de surfaces particuliĂšrement adaptĂ©e au recouvrement d’implants. Ces surfaces modifiĂ©es pourront ainsi interagir avec leur environnement biologique. Au cours de ce travail de thĂšse, nous avons dĂ©veloppĂ© un nouveau revĂȘtement, Ă  base de composĂ©s naturels, capable de recouvrir plusieurs types de surfaces. De plus, ces revĂȘtements originaux peuvent ĂȘtre utilisĂ©s pour orienter certains phĂ©nomĂšnes cellulaires. Dans la premiĂšre partie de ce travail de thĂšse, nous avons mis au point un nouveau systĂšme de films multicouches Ă  base de collagĂšne et d’alginate. La rĂ©ticulation chimique avec la gĂ©nipine, un agent naturel d’origine vĂ©gĂ©tale (Gardenia Jasminoide), stabilise ces constructions pour une utilisation en conditions physiologiques. Les Ă©tudes d’adhĂ©rence et de prolifĂ©ration de cellules endothĂ©liales humaines ont montrĂ© que ces revĂȘtements Ă  base de constituants naturels sont des supports adĂ©quats en vue d’applications biomĂ©dicales. Nous avons ensuite dĂ©posĂ© des films collagĂšne/alginate sur des implants en titane prĂ©cĂ©demment recouvert d’un gel microporeux en poly(acide lactique). Nous avons pu montrer que les films collagĂšne/alginate favorisent la prolifĂ©ration de cellules Ă©pithĂ©liales, ce qui permettrait une meilleure intĂ©gration des implants. Dans la deuxiĂšme partie de notre travail, nous avons dĂ©veloppĂ© une technique permettant d’obtenir des revĂȘtements et des membranes Ă  base de films multicouches collagĂšne/alginate ayant des structures fibrillaires orientĂ©es. L’alignement fibrillaire s’obtient par simple Ă©tirement des substrats Ă©lastiques en poly(dimĂ©thyl siloxane) (PDMS) sur lesquels sont dĂ©posĂ©s les revĂȘtements collagĂšne/alginate. La dĂ©formation longitudinale du substrat induit un alignement prĂ©fĂ©rentiel des fibrilles de collagĂšne du revĂȘtement. L’étude de l’influence du taux d’étirement sur l’alignement des fibres a montrĂ© qu’il Ă©tait possible de moduler cet alignement. Enfin, nous avons observĂ© que le comportement de diffĂ©rents types cellulaires (fibroblastes et astrocytes) est modifiĂ© par l’alignement fibrillaire. On note que les cellules s’alignent dans la mĂȘme direction que les fibrilles de collagĂšne. A l’évidence, l’organisation fibrillaire du revĂȘtement conditionne la gĂ©omĂ©trie de l’étalement cellulaire. Les cellules s’allongent lorsque les fibrilles sont alignĂ©es. De plus, il apparaĂźt que la direction des divisions cellulaires est guidĂ©e par la direction de l’alignement des fibrilles de collagĂšne dans le revĂȘtement Ă©tirĂ©. Cela signifie que les cellules sont guidĂ©es par les fibrilles de collagĂšne alignĂ©es

    Collagen-based coatings for biomaterials functionalization

    No full text
    La fonctionnalisation des biomatĂ©riaux est une stratĂ©gie probante et prometteuse dĂ©veloppĂ©e pour favoriser l’intĂ©gration de biomatĂ©riaux dans un organisme vivant. Le dĂ©pĂŽt de films multicouches de polyĂ©lectrolytes est une mĂ©thode de fonctionnalisation de surfaces particuliĂšrement adaptĂ©e au recouvrement d’implants. Ces surfaces modifiĂ©es pourront ainsi interagir avec leur environnement biologique. Au cours de ce travail de thĂšse, nous avons dĂ©veloppĂ© un nouveau revĂȘtement, Ă  base de composĂ©s naturels, capable de recouvrir plusieurs types de surfaces. De plus, ces revĂȘtements originaux peuvent ĂȘtre utilisĂ©s pour orienter certains phĂ©nomĂšnes cellulaires. Dans la premiĂšre partie de ce travail de thĂšse, nous avons mis au point un nouveau systĂšme de films multicouches Ă  base de collagĂšne et d’alginate. La rĂ©ticulation chimique avec la gĂ©nipine, un agent naturel d’origine vĂ©gĂ©tale (Gardenia Jasminoide), stabilise ces constructions pour une utilisation en conditions physiologiques. Les Ă©tudes d’adhĂ©rence et de prolifĂ©ration de cellules endothĂ©liales humaines ont montrĂ© que ces revĂȘtements Ă  base de constituants naturels sont des supports adĂ©quats en vue d’applications biomĂ©dicales. Nous avons ensuite dĂ©posĂ© des films collagĂšne/alginate sur des implants en titane prĂ©cĂ©demment recouvert d’un gel microporeux en poly(acide lactique). Nous avons pu montrer que les films collagĂšne/alginate favorisent la prolifĂ©ration de cellules Ă©pithĂ©liales, ce qui permettrait une meilleure intĂ©gration des implants. Dans la deuxiĂšme partie de notre travail, nous avons dĂ©veloppĂ© une technique permettant d’obtenir des revĂȘtements et des membranes Ă  base de films multicouches collagĂšne/alginate ayant des structures fibrillaires orientĂ©es. L’alignement fibrillaire s’obtient par simple Ă©tirement des substrats Ă©lastiques en poly(dimĂ©thyl siloxane) (PDMS) sur lesquels sont dĂ©posĂ©s les revĂȘtements collagĂšne/alginate. La dĂ©formation longitudinale du substrat induit un alignement prĂ©fĂ©rentiel des fibrilles de collagĂšne du revĂȘtement. L’étude de l’influence du taux d’étirement sur l’alignement des fibres a montrĂ© qu’il Ă©tait possible de moduler cet alignement. Enfin, nous avons observĂ© que le comportement de diffĂ©rents types cellulaires (fibroblastes et astrocytes) est modifiĂ© par l’alignement fibrillaire. On note que les cellules s’alignent dans la mĂȘme direction que les fibrilles de collagĂšne. A l’évidence, l’organisation fibrillaire du revĂȘtement conditionne la gĂ©omĂ©trie de l’étalement cellulaire. Les cellules s’allongent lorsque les fibrilles sont alignĂ©es. De plus, il apparaĂźt que la direction des divisions cellulaires est guidĂ©e par la direction de l’alignement des fibrilles de collagĂšne dans le revĂȘtement Ă©tirĂ©. Cela signifie que les cellules sont guidĂ©es par les fibrilles de collagĂšne alignĂ©es.Biomaterial functionalization is a promising strategy developed to favor material implantation in a living organism. The deposition of polyelectrolyte multilayer films is a useful functionalization technique to coat implants. These modified surfaces may then interact with their biological environment. In this work, we developed new collagen-based coatings and membranes, able to cover several kinds of substrates. Moreover, these original coatings can either promote cell proliferation or guide cell alignment.In the first part of our work, we developed a new polyelectrolyte multilayer assembly made of collagen and alginate. Chemical cross-linking with a natural agent, genipin (extracted from Gardenia Jasminoide), renders the films stable in physiological conditions. Human endothelial cells adhere and proliferate well on these collagen-based coatings. Then, we functionalized macroporous poly(lactic acid) gels-coated titanium implants with collagen/alginate multilayer films to favor epithelial cell proliferation. We showed that cells adhere and proliferate better on collagen/alginate-coated implants. This shows the potential suitability of collagen/alginate coatings for a better integration of biomaterials.In the second part of our work we developed a new technique in order to align the fibrillar structure of collagen/alginate multilayer films and membranes. The principle is simple and versatile. It consists in stretching collagen/alginate multilayer film coated on PDMS substrates. This longitudinal deformation leads to the alignment of the collagen fibrils in the coating. Cell adhesion and proliferation (fibroblasts, astrocytes) is modified due to fibrils alignment. We showed that cells align along the direction of the collagen fibrils. Obviously, the fibrillar organization of the coatings influences cell adhesion geometry. Cells stretch out along aligned fibrils. Furthermore, it appears that cell divisions direction is guided by the direction of the collagen fibrils alignment in the stretched coatings

    Cell Alignment Driven by Mechanically Induced Collagen Fiber Alignment in Collagen/Alginate Coatings

    Get PDF
    International audienceFor many years it has been a major challenge to regenerate damaged tissues using synthetic or natural materials. To favor the healing processes after tendon, cornea, muscle, or brain injuries, aligned collagen-based architectures are of utmost interest. In this study, we define a novel aligned coating based on a collagen/alginate (COL/ALG) multilayer film. The coating exhibiting a nanofibrillar structure is cross-linked with genipin for stability in physiological conditions. By stretching COL/ALG-coated polydimethylsiloxane substrates, we developed a versatile method to align the collagen fibrils of the polymeric coating. Assays on cell morphology and alignment were performed to investigate the properties of these films. Microscopic assessments revealed that cells align with the stretched collagen fibrils of the coating. The degree of alignment is tuned by the stretching rate (i.e., the strain) of the COL/ALG-coated elastic substrate. Such coatings are of great interest for strategies that require aligned nanofibrillar biological material as a substrate for tissue engineering
    corecore