467 research outputs found

    Sensitivity analyses of OH missing sinks over Tokyo metropolitan area in the summer of 2007

    Get PDF
    OH reactivity is one of key indicators which reflect impacts of photochemical reactions in the atmosphere. An observation campaign has been conducted in the summer of 2007 at the heart of Tokyo metropolitan area to measure OH reactivity. The total OH reactivity measured directly by the laser-induced pump and probe technique was higher than the sum of the OH reactivity calculated from concentrations and reaction rate coefficients of individual species measured in this campaign. And then, three-dimensional air quality simulation has been conducted to evaluate the simulation performance on the total OH reactivity including "missing sinks", which correspond to the difference between the measured and calculated total OH reactivity. The simulated OH reactivity is significantly underestimated because the OH reactivity of volatile organic compounds (VOCs) and missing sinks are underestimated. When scaling factors are applied to input emissions and boundary concentrations, a good agreement is observed between the simulated and measured concentrations of VOCs. However, the simulated OH reactivity of missing sinks is still underestimated. Therefore, impacts of unidentified missing sinks are investigated through sensitivity analyses. In the cases that unknown secondary products are assumed to account for unidentified missing sinks, they tend to suppress formation of secondary aerosol components and enhance formation of ozone. In the cases that unidentified primary emitted species are assumed to account for unidentified missing sinks, a variety of impacts may be observed, which could serve as precursors of secondary organic aerosols (SOA) and significantly increase SOA formation. Missing sinks are considered to play an important role in the atmosphere over Tokyo metropolitan area

    Breakdown of supersaturation barrier links protein folding to amyloid formation

    Get PDF
    The thermodynamic hypothesis of protein folding, known as the “Anfinsen’s dogma” states that the native structure of a protein represents a free energy minimum determined by the amino acid sequence. However, inconsistent with the Anfinsen’s dogma, globular proteins can misfold to form amyloid fibrils, which are ordered aggregates associated with diseases such as Alzheimer’s and Parkinson’s diseases. Here, we present a general concept for the link between folding and misfolding. We tested the accessibility of the amyloid state for various proteins upon heating and agitation. Many of them showed Anfinsen-like reversible unfolding upon heating, but formed amyloid fibrils upon agitation at high temperatures. We show that folding and amyloid formation are separated by the supersaturation barrier of a protein. Its breakdown is required to shift the protein to the amyloid pathway. Thus, the breakdown of supersaturation links the Anfinsen’s intramolecular folding universe and the intermolecular misfolding universe

    Two-Dimensional Infrared Spectroscopy of Antiparallel β-Sheet Secondary Structure

    Get PDF
    We investigate the sensitivity of femtosecond Fourier transform two-dimensional infrared spectroscopy to protein secondary structure with a study of antiparallel β-sheets. The results show that 2D IR spectroscopy is more sensitive to structural differences between proteins than traditional infrared spectroscopy, providing an observable that allows comparison to quantitative models of protein vibrational spectroscopy. 2D IR correlation spectra of the amide I region of poly-L-lysine, concanavalin A, ribonuclease A, and lysozyme show cross-peaks between the IR-active transitions that are characteristic of amide I couplings for polypeptides in antiparallel hydrogen-bonding registry. For poly-L-lysine, the 2D IR spectrum contains the eight-peak structure expected for two dominant vibrations of an extended, ordered antiparallel β-sheet. In the proteins with antiparallel β-sheets, interference effects between the diagonal and cross-peaks arising from the sheets, combined with diagonally elongated resonances from additional amide transitions, lead to a characteristic “Z”-shaped pattern for the amide I region in the 2D IR spectrum. We discuss in detail how the number of strands in the sheet, the local configurational disorder in the sheet, the delocalization of the vibrational excitation, and the angle between transition dipole moments affect the position, splitting, amplitude, and line shape of the cross-peaks and diagonal peaks.

    Clinical practice guideline on the optimal radiotherapeutic management of brain metastases

    Get PDF
    BACKGROUND: An evidence-based clinical practice guideline on the optimal radiotherapeutic management of single and multiple brain metastases was developed. METHODS: A systematic review and meta-analysis was performed. The Supportive Care Guidelines Group formulated clinical recommendations based on their interpretation of the evidence. External review of the report by Ontario practitioners was obtained through a mailed survey, and final approval was obtained from Cancer Care Ontario's Practice Guidelines Coordinating Committee (PGCC). RESULTS: One hundred and nine Ontario practitioners responded to the survey (return rate 44%). Ninety-six percent of respondents agreed with the interpretation of the evidence, and 92% agreed that the report should be approved. Minor revisions were made based on feedback from external reviewers and the PGCC. The PGCC approved the final practice guideline report. CONCLUSIONS: For adult patients with a clinical and radiographic diagnosis of brain metastases (single or multiple) we conclude that, • Surgical excision should be considered for patients with good performance status, minimal or no evidence of extracranial disease, and a surgically accessible single brain metastasis. • Postoperative whole brain radiotherapy (WBRT) should be considered to reduce the risk of tumour recurrence for patients who have undergone resection of a single brain metastasis. • Radiosurgery boost with WBRT may improve survival in select patients with unresectable single brain metastases. • The whole brain should be irradiated for multiple brain metastases. Standard dose-fractionation schedules are 3000 cGy in 10 fractions or 2000 cGy in 5 fractions. • Radiosensitizers are not recommended outside research studies. • In select patients, radiosurgery may be considered as boost therapy with WBRT to improve local tumour control. Radiosurgery boost may improve survival in select patients. • Chemotherapy as primary therapy or chemotherapy with WBRT remains experimental. • Supportive care is an option but there is a lack of Level 1 evidence as to which subsets of patients should be managed with supportive care alone. Qualifying statements addressing factors to consider when applying these recommendations are provided in the full report. The rigorous development, external review and approval process has resulted in a practice guideline that is strongly endorsed by Ontario practitioners

    The correlation of RNase A enzymatic activity with the changes in the distance between Nepsilon2-His12 and N delta1-His119 upon addition of stabilizing and destabilizing salts.

    Get PDF
    The effect of stabilizing and destabilizing salts on the catalytic behavior of ribonuclease A (RNase A) was investigated at pH 7.5 and 25 degrees C, using spectrophotometric, viscometric and molecular dynamic methods. The changes in the distance between N(epsilon2) of His(12) and N(delta1) of His(119) at the catalytic center of RNase A upon the addition of sodium sulfate, sodium hydrogen sulfate and sodium thiocyanate were evaluated by molecular dynamic methods. The compactness and expansion in terms of Stokes radius of RNase A upon the addition of sulfate ions as kosmotropic salts, and thiocyanate ion as a chaotropic salt, were estimated by viscometric measurements. Enzyme activity was measured using cytidine 2', 3'-cyclic monophosphate as a substrate. The results from the measurements of distances between N(epsilon2) of His(12) and N(delta1) of His(119) and Stokes radius suggest (i) that the presence of sulfate ions decreases the distance between the catalytic His residues and increases the globular compactness, and (ii) that there is an expansion of the enzyme surface as well as elongation of the catalytic center in the presence of thiocyanate ion. These findings are in agreement with activity measurements

    Outcome of radiotherapy in T1 glottic carcinoma: A population-based study

    Get PDF
    We evaluated the radiation outcome and prognostic factors in a population-based study of early (T1N0M0) glottic carcinoma. Survival parameters and prognostic factors were evaluated by uni- and multivariate analysis in 316 consecutive irradiated patients with T1 glottic carcinoma in the Comprehensive Cancer Center West region of the western Netherlands. Median follow-up was 70 months (range 1-190 months). Five and ten-year local control was 86 and 84%. Disease specific survival was 97% at 5 and 10 years. In multivariate analysis, pre-existent laryngeal hypertrophic laryngitis was the only predictive factor for local control (relative risk = 3.0, P = 0.02). Comorbidity was prognostic for overall survival. No factor was predictive for disease specific survival. Pre-existent laryngeal hypertrophic laryngitis is a new risk factor associated with reduced local control in T1 glottic carcinoma treated with radiotherapy

    Acute transcriptional up-regulation specific to osteoblasts/osteoclasts in medaka fish immediately after exposure to microgravity

    Get PDF
    © The Author(s) 2016.Bone loss is a serious problem in spaceflight; however, the initial action of microgravity has not been identified. To examine this action, we performed live-imaging of animals during a space mission followed by transcriptome analysis using medaka transgenic lines expressing osteoblast and osteoclast-specific promoter-driven GFP and DsRed. In live-imaging for osteoblasts, the intensity of osterix- or osteocalcin-DsRed fluorescence in pharyngeal bones was significantly enhanced 1 day after launch; and this enhancement continued for 8 or 5 days. In osteoclasts, the signals of TRAP-GFP and MMP9-DsRed were highly increased at days 4 and 6 after launch in flight. HiSeq from pharyngeal bones of juvenile fish at day 2 after launch showed up-regulation of 2 osteoblast- and 3 osteoclast- related genes. Gene ontology analysis for the whole-body showed that transcription of genes in the category "nucleus" was significantly enhanced; particularly, transcription-regulators were more up-regulated at day 2 than at day 6. Lastly, we identified 5 genes, c-fos, jun-B-like, pai-1, ddit4 and tsc22d3, which were up-regulated commonly in the whole-body at days 2 and 6, and in the pharyngeal bone at day 2. Our results suggested that exposure to microgravity immediately induced dynamic alteration of gene expression levels in osteoblasts and osteoclasts

    Revisiting in vivo staining with alizarin red S - a valuable approach to analyse zebrafish skeletal mineralization during development and regeneration

    Get PDF
    Background The correct evaluation of mineralization is fundamental for the study of skeletal development, maintenance, and regeneration. Current methods to visualize mineralized tissue in zebrafish rely on: 1) fixed specimens; 2) radiographic and μCT techniques, that are ultimately limited in resolution; or 3) vital stains with fluorochromes that are indistinguishable from the signal of green fluorescent protein (GFP)-labelled cells. Alizarin compounds, either in the form of alizarin red S (ARS) or alizarin complexone (ALC), have long been used to stain the mineralized skeleton in fixed specimens from all vertebrate groups. Recent works have used ARS vital staining in zebrafish and medaka, yet not based on consistent protocols. There is a fundamental concern on whether ARS vital staining, achieved by adding ARS to the water, can affect bone formation in juvenile and adult zebrafish, as ARS has been shown to inhibit skeletal growth and mineralization in mammals. Results Here we present a protocol for vital staining of mineralized structures in zebrafish with a low ARS concentration that does not affect bone mineralization, even after repetitive ARS staining events, as confirmed by careful imaging under fluorescent light. Early and late stages of bone development are equally unaffected by this vital staining protocol. From all tested concentrations, 0.01 % ARS yielded correct detection of bone calcium deposits without inducing additional stress to fish. Conclusions The proposed ARS vital staining protocol can be combined with GFP fluorescence associated with skeletal tissues and thus represents a powerful tool for in vivo monitoring of mineralized structures. We provide examples from wild type and transgenic GFP-expressing zebrafish, for endoskeletal development and dermal fin ray regeneration

    Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C−H Bond Activation

    Get PDF
    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct functionalization of nitrogen heterocycles through C−H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes our work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. We initially discovered an intramolecular Rh-catalyzed C-2 alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. We then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, we discovered that a novel substrate-derived Rh−N-heterocyclic carbene (NHC) complex was involved as an intermediate. We then synthesized analogous Rh−NHC complexes directly by treating precursors to the intermediate [RhCl(PCy3)2] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazoline, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy3)2 fragment coordinates to the heterocycle before intramolecular activation of the C−H bond occurs. The resulting Rh−H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid cocatalysts accelerate the alkylation, we developed conditions that efficiently and intermolecularly alkylate a variety of heterocycles, including azoles, azolines, dihydroquinazolines, pyridines, and quinolines, with a wide range of functionalized olefins. We demonstrated the utility of this methodology in the synthesis of natural products, drug candidates, and other biologically active molecules. In addition, we developed conditions to directly arylate these heterocycles with aryl halides. Our initial conditions that used PCy3 as a ligand were successful only for aryl iodides. However, efforts designed to avoid catalyst decomposition led to the development of ligands based on 9-phosphabicyclo[4.2.1]nonane (phoban) that also facilitated the coupling of aryl bromides. We then replicated the unique coordination environment, stability, and catalytic activity of this complex using the much simpler tetrahydrophosphepine ligands and developed conditions that coupled aryl bromides bearing diverse functional groups without the use of a glovebox or purified reagents. With further mechanistic inquiry, we anticipate that researchers will better understand the details of the aforementioned Rh-catalyzed C−H bond functionalization reactions, resulting in the design of more efficient and robust catalysts, expanded substrate scope, and new transformations
    corecore