95 research outputs found

    Navigated interventions in the head and neck area: standardized assessment of a new handy field generator

    Full text link
    Electromagnetic (EM) tracking enables localization of surgical instruments within the magnetic field emitted by an EM field generator (FG). Usually, the larger a FG is, the larger its tracking volume is. However, the company NDI (Northern Digital Inc., Waterloo, ON, Canada) recently introduced the Planar 10-11 FG, which combines a compact construction (97mm x 112mm x 31mm) with a relatively large, cylindrical tracking volume (diameter: 340mm, height: 340mm). Using the standardized assessment protocol of Hummel et al., the FG was tested with regard to its tracking accuracy and to its robustness with respect to external sources of disturbance. The mean positional error (5cm distance metric according to Hummel protocol) was 0.59mm, with a mean jitter of 0.26mm in the standard setup. The mean orientational error was found to be 0.10{\deg}. The highest positional error (4.82mm) due to metallic sources of disturbance was caused by the steel SST 303. In contrast, steel SST 416 caused the lowest positional error (0.10mm). Overall, the Planar 10-11 FG tends to achieve better tracking accuracy results compared to other NDI FGs. Due to its compact construction and portability, the FG could contribute to increased clinical use of EM tracking systems.Comment: This is the preprint version of the BVM paper already published in the conference proceedings of "Bildverarbeitung in der Medizin 2019". Paper written in Germa

    Potential new genes for resistance to Mycosphaerella graminicola identified in Triticum aestivum x Lophopyrum elongatum disomic substitution lines.

    Get PDF
    Lophopyrum species carry many desirable agronomic traits, including disease resistance, which can be transferred towheat by interspecific hybridization. To identify potentially new genes for disease and insect resistance carried by individual Lophopyrum chromosomes, 19 of 21 possible wheat cultivar Chinese Spring 9 Lophopyrum elongatum disomic substitution lines were tested for resistance to barley yellow dwarf virus (BYDV), cereal yellow dwarf virus (CYDV), the Hessian fly Mayetiola destructor, and the fungal pathogens Blumeria graminis and Mycosphaerella graminicola (asexual stage: Septoria tritici). Low resistance to BYDV occurred in some of the disomic substitution lines, but viral titers were significantly higher than those of two Lophopyrum species tested. This suggested that genes on more than one Lophopyrum chromosome are required for complete resistance to this virus. A potentially new gene for resistance to CYDV was detected on wheatgrass chromosome 3E. All of the substitution lines were susceptible to Mayetiola destructor and one strain of B. graminis. Disomic substitution lines containing wheatgrass chromosomes 1E and 6E were significantly more resistant to M. graminicola compared to Chinese Spring. Although neither chromosome by itself conferred resistance as high as that in the wheatgrass parent, they do appear to contain potentially new genes for resistance against this pathogen that could be useful for future plant-improvement programs

    New broad-spectrum resistance to septoria tritici blotch derived from synthetic hexaploid wheat

    Get PDF
    Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola, is one of the most devastating foliar diseases of wheat. We screened five synthetic hexaploid wheats (SHs), 13 wheat varieties that represent the differential set of cultivars and two susceptible checks with a global set of 20 isolates and discovered exceptionally broad STB resistance in SHs. Subsequent development and analyses of recombinant inbred lines (RILs) from a cross between the SH M3 and the highly susceptible bread wheat cv. Kulm revealed two novel resistance loci on chromosomes 3D and 5A. The 3D resistance was expressed in the seedling and adult plant stages, and it controlled necrosis (N) and pycnidia (P) development as well as the latency periods of these parameters. This locus, which is closely linked to the microsatellite marker Xgwm494, was tentatively designated Stb16q and explained from 41 to 71% of the phenotypic variation at seedling stage and 28–31% in mature plants. The resistance locus on chromosome 5A was specifically expressed in the adult plant stage, associated with SSR marker Xhbg247, explained 12–32% of the variation in disease, was designated Stb17, and is the first unambiguously identified and named QTL for adult plant resistance to M. graminicola. Our results confirm that common wheat progenitors might be a rich source of new Stb resistance genes/QTLs that can be deployed in commercial breeding programs

    Intracellular coexpression of CXC- and CC– chemokine receptors and their ligands in human melanoma cell lines and dynamic variations after xenotransplantation

    Get PDF
    BackgroundChemokines have been implicated in tumor progression and metastasis. In melanoma, chemokine receptors have been implicated in organ selective metastasis by regulating processes such as chemoattraction, adhesion and survival.MethodsIn this study we have analyzed, using flow cytometry, the systems formed by the chemokine receptors CXCR3, CXCR4, CXCR7, CCR7 and CCR10 and their ligands in thirteen human melanoma cell lines (five established from primary tumors and eight established from metastasis from different tissues). WM-115 and WM-266.4 melanoma cell lines (obtained from a primary and a metastatic melanoma respectively) were xenografted in nude mice and the tumors and cell lines derived from them were also analyzed.ResultsOur results show that the melanoma cell lines do not express or express in a low degree the chemokine receptors on their cell surface. However, melanoma cell lines show intracellular expression of all the aforementioned receptors and most of their respective ligands. When analyzing the xenografts and the cell lines obtained from them we found variations in the intracellular expression of chemokines and chemokine receptors that differed between the primary and metastatic cell lines. However, as well as in the original cell lines, minute or no expression of the chemokine receptors was observed at the cell surface.ConclusionsCoexpression of chemokine receptors and their ligands was found in human melanoma cell lines. However, this expression is intracellular and receptors are not found at the cell membrane nor chemokines are secreted to the cell medium. The levels of expressed chemokine receptors and their ligands show dynamic variations after xenotransplantation that differ depending on the origin of the cell line (from primary tumor or from metastasis)

    Meta-omics approaches to understand and improve wastewater treatment systems

    Get PDF
    Biological treatment of wastewaters depends on microbial processes, usually carried out by mixed microbial communities. Environmental and operational factors can affect microorganisms and/or impact microbial community function, and this has repercussion in bioreactor performance. Novel high-throughput molecular methods (metagenomics, metatranscriptomics, metaproteomics, metabolomics) are providing detailed knowledge on the microorganisms governing wastewater treatment systems and on their metabolic capabilities. The genomes of uncultured microbes with key roles in wastewater treatment plants (WWTP), such as the polyphosphate-accumulating microorganism Candidatus Accumulibacter phosphatis, the nitrite oxidizer Candidatus Nitrospira defluvii or the anammox bacterium Candidatus Kuenenia stuttgartiensis are now available through metagenomic studies. Metagenomics allows to genetically characterize full-scale WWTP and provides information on the lifestyles and physiology of key microorganisms for wastewater treatment. Integrating metagenomic data of microorganisms with metatranscriptomic, metaproteomic and metabolomic information provides a better understanding of the microbial responses to perturbations or environmental variations. Data integration may allow the creation of predictive behavior models of wastewater ecosystems, which could help in an improved exploitation of microbial processes. This review discusses the impact of meta-omic approaches on the understanding of wastewater treatment processes, and the implications of these methods for the optimization and design of wastewater treatment bioreactors.Research was supported by the Spanish Ministry of Education and Science (Contract Project CTQ2007-64324 and CONSOLIDER-CSD 2007-00055) and the Regional Government of Castilla y Leon (Ref. VA038A07). Research of AJMS is supported by the European Research Council (Grant 323009

    Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici

    Get PDF
    Deployment of fast-evolving disease-resistance genes is one of the most successful strategies used by plants to fend off pathogens. In gene-for-gene relationships, most cloned disease-resistance genes encode intracellular nucleotide-binding leucine-rich-repeat proteins (NLRs) recognizing pathogensecreted isolate-specific avirulence (Avr) effectors delivered to the host cytoplasm. This process often triggers a localized hypersensitive response, which halts further disease development. Here we report the map-based cloning of the wheat Stb6 gene and demonstrate that it encodes a conserved wallassociated receptor kinase (WAK)-like protein, which detects the presence of a matching apoplastic effector and confers pathogen resistance without a hypersensitive response. This report demonstrates gene-for-gene disease resistance controlled by this class of proteins in plants. Moreover, Stb6 is, to our knowledge, the first cloned gene specifying resistance to Zymoseptoria tritici, an important foliar fungal pathogen affecting wheat and causing economically damaging septoria tritici blotch (STB) disease

    Identification and location of Stb9, a gene for resistance to septoria tritici blotch in wheat cultivars Courtot and Tonic

    No full text
    This study reports the discovery of a gene for resistance to septoria tritici blotch (STB) in two spring wheat cultivars, Courtot and Tonic. The gene, named Stb9, confers resistance to Mycosphaerella graminicola isolate IPO89011. It was mapped by quantitative trait loci (QTL) analysis using an existing map of Courtot x Chinese Spring and was located between markers Xfbb226 (3.6 cM) and XksuF1b (9 cM) on the long arm of chromosome 2B. Markers linked to Stb9 in Courtot were then shown to be linked to resistance to IPO89011 in F 3 families of Tonic x Longbow. Allelism tests in which Tonic was crossed with Courtot confirmed that Tonic has a gene for resistance to IPO89011 at or very close to the Stb9 locus. SSR markers flanking Stb9 may be used in marker-assisted selection to introgress this gene into winter cultivars or in spring wheat breeding programmes outside Europe
    corecore