70 research outputs found

    Interleukin-1 receptor antagonist is upregulated during diet-induced obesity and regulates insulin sensitivity in rodents

    Get PDF
    Aims/hypothesis: The IL-1 receptor antagonist (IL-1Ra) is an anti-inflammatory cytokine known to antagonise the actions of IL-1. We have previously shown that IL-1Ra is markedly upregulated in the serum of obese patients, is correlated with BMI and insulin resistance, and is overexpressed in the white adipose tissue (WAT) of obese humans. The aim of this study was to examine the role of IL-1Ra in the regulation of glucose homeostasis in rodents. Methods: We assessed the expression of genes related to IL-1 signalling in the WAT of mice fed a high-fat diet, as well as the effect of Il1rn (the gene for IL-1Ra) deletion and treatment with IL-1Ra on glucose homeostasis in rodents. Results: We show that the expression of Il1rn and the gene encoding the inhibitory type II IL-1 receptor was upregulated in diet-induced obesity. The blood insulin:glucose ratio was significantly lower in Il1rn −/− animals, which is compatible with an increased sensitivity to insulin, reinforced by the fact that the insulin content and pancreatic islet morphology of Il1rn −/− animals were normal. In contrast, the administration of IL-1Ra to normal rats for 5days led to a decrease in the whole-body glucose disposal due to a selective decrease in muscle-specific glucose uptake. Conclusions/interpretation: The expression of genes encoding inhibitors of IL-1 signalling is upregulated in the WAT of mice with diet-induced obesity, and IL-1Ra reduces insulin sensitivity in rats through a muscle-specific decrease in glucose uptake. These results suggest that the markedly increased levels of IL-1Ra in human obesity might contribute to the development of insulin resistanc

    Cell cycle phase perturbations and apoptosis in tumour cells induced by aplidine

    Get PDF
    Aplidine, dehydrodidemnin B, is a marine depsipeptide isolated from the Mediterranean tunicate Aplidium albicans currently in phase II clinical trial. In human Molt-4 leukaemia cells Aplidine was found to be cytotoxic at nanomolar concentrations and to induce both a G1 arrest and a G2 blockade. The drug-induced cell cycle perturbations and subsequent cell death do not appear to be related to macromolecular synthesis (protein, RNA, DNA) since the effects occur at concentrations (e.g. 10 nM) in which macromolecule synthesis was not markedly affected. Ten nM Aplidine for 1 h inhibited ornithine decarboxylase activity, with a subsequently strong decrease in putrescine levels. This finding has questionable relevance since addition of putrescine did not significantly reduce the cell cycle perturbations or the cytotoxicity of Aplidine. The cell cycle perturbations caused by Aplidine were also not due to an effect on the cyclin-dependent kinases. Although the mechanism of action of Aplidine is still unclear, the cell cycle phase perturbations and the rapid induction of apoptosis in Molt-4 cells appear to be due to a mechanism different from that of known anticancer drugs

    Phylogenetic Distribution and Evolutionary History of Bacterial DEAD-Box Proteins

    Get PDF
    DEAD-box proteins are found in all domains of life and participate in almost all cellular processes that involve RNA. The presence of DEAD and Helicase_C conserved domains distinguish these proteins. DEAD-box proteins exhibit RNA-dependent ATPase activity in vitro, and several also show RNA helicase activity. In this study, we analyzed the distribution and architecture of DEAD-box proteins among bacterial genomes to gain insight into the evolutionary pathways that have shaped their history. We identified 1,848 unique DEAD-box proteins from 563 bacterial genomes. Bacterial genomes can possess a single copy DEAD-box gene, or up to 12 copies of the gene, such as in Shewanella. The alignment of 1,208 sequences allowed us to perform a robust analysis of the hallmark motifs of DEAD-box proteins and determine the residues that occur at high frequency, some of which were previously overlooked. Bacterial DEAD-box proteins do not generally contain a conserved C-terminal domain, with the exception of some members that possess a DbpA RNA-binding domain (RBD). Phylogenetic analysis showed a separation of DbpA-RBD-containing and DbpA-RBD-lacking sequences and revealed a group of DEAD-box protein genes that expanded mainly in the Proteobacteria. Analysis of DEAD-box proteins from Firmicutes and Îł-Proteobacteria, was used to deduce orthologous relationships of the well-studied DEAD-box proteins from Escherichia coli and Bacillus subtilis. These analyses suggest that DbpA-RBD is an ancestral domain that most likely emerged as a specialized domain of the RNA-dependent ATPases. Moreover, these data revealed numerous events of gene family expansion and reduction following speciation

    Chemoproteomics reveals Toll-like receptor fatty acylation

    Get PDF
    Partial funding for Open Access provided by The Ohio State University Open Access Fund.Background: Palmitoylation is a 16-carbon lipid post-translational modification that increases protein hydrophobicity. This form of protein fatty acylation is emerging as a critical regulatory modification for multiple aspects of cellular interactions and signaling. Despite recent advances in the development of chemical tools for the rapid identification and visualization of palmitoylated proteins, the palmitoyl proteome has not been fully defined. Here we sought to identify and compare the palmitoylated proteins in murine fibroblasts and dendritic cells. Results: A total of 563 putative palmitoylation substrates were identified, more than 200 of which have not been previously suggested to be palmitoylated in past proteomic studies. Here we validate the palmitoylation of several new proteins including Toll-like receptors (TLRs) 2, 5 and 10, CD80, CD86, and NEDD4. Palmitoylation of TLR2, which was uniquely identified in dendritic cells, was mapped to a transmembrane domain-proximal cysteine. Inhibition of TLR2 S-palmitoylation pharmacologically or by cysteine mutagenesis led to decreased cell surface expression and a decreased inflammatory response to microbial ligands. Conclusions: This work identifies many fatty acylated proteins involved in fundamental cellular processes as well as cell type-specific functions, highlighting the value of examining the palmitoyl proteomes of multiple cell types. Spalmitoylation of TLR2 is a previously unknown immunoregulatory mechanism that represents an entirely novel avenue for modulation of TLR2 inflammatory activity.This work was supported by funding from the NIH/NIAID (grant R00AI095348 to J.S.Y.), the NIH/NIGMS (R01GM087544 to HCH), and the Ohio State University Public Health Preparedness for Infectious Diseases (PHPID) program. NMC is supported by the Ohio State University Systems and Integrative Biology Training Program (NIH/NIGMS grant T32GM068412). BWZ is a fellow of the National Science Foundation Graduate Research Fellowship Program (DGE-0937362)

    A new Late Agenian (MN2a, Early Miocene) fossil assemblage from Wallenried (Molasse Basin, Canton Fribourg, Switzerland)

    Get PDF
    Excavations of two fossiliferous layers in the Wallenried sand- and marl pit produced a very diversified vertebrate fauna. New material allows the reassessment of the taxonomic position of the ruminant taxa Andegameryx andegaviensis and endemic Friburgomeryx wallenriedensis. An emended diagnosis for the second species is provided and additional material of large and small mammals, as well as ectothermic vertebrates, is described. The recorded Lagomorpha show interesting morphological deviations from other Central European material, and probably represent a unique transitional assemblage with a co-occurrence of Titanomys, Lagopsis and Prolagus. Rodentia and Eulipotyphla belong to typical and well-known species of the Agenian of the Swiss Molasse Basin. Abundant small mammal teeth have allowed us to pinpoint the biostratigraphic age of Wallenried to late MN2a. The biostratigraphic age conforms to data derived from the charophyte assemblages and confirms the oldest occurrence of venomous snake fangs. The palaeoenvironmental context is quite complex. Sedimentary structures and fauna (fishes, frogs, salamanders, ostracods) are characteristic for a humid, lacustrine environment within a flood plain system

    Contr\uf4le immunologique de la r\ue9g\ue9n\ue9ration (IV)

    No full text
    Volume: 74Start Page: 649End Page: 66

    Innovative Fabrication of Fuels and Targets for Pu Recycling and Minor Actinide Transmutation.

    No full text
    Abstract not availableJRC.E-Institute for Transuranium Elements (Karlsruhe

    Hyperglycemia downregulates Connexin36 in pancreatic islets via the upregulation of ICER-1/ICER-1Îł.

    No full text
    Channels formed by the gap junction protein Connexin36 (CX36) contribute to the proper control of insulin secretion. We previously demonstrated that chronic exposure to glucose decreases Cx36 levels in insulin-secreting cells in vitro. Here, we investigated whether hyperglycemia also regulates Cx36 in vivo. Using a model of continuous glucose infusion in adult rats, we showed that prolonged (24-48 h) hyperglycemia reduced the Cx36 gene Gjd2 mRNA levels in pancreatic islets. Accordingly, prolonged exposure to high glucose concentrations also reduced the expression and function of Cx36 in the rat insulin-producing INS-1E cell line. The glucose effect was blocked after inhibition of the cAMP/PKA pathway and was associated with an overexpression of the inducible cAMP early repressor ICER-1/ICER-1Îł, which binds to a functional cAMP-response element in the promoter of the Cx36 gene Gjd2. The involvement of this repressor was further demonstrated using an antisense strategy of ICER-1 inhibition, which prevented glucose-induced downregulation of Cx36. The data indicate that chronic exposure to glucose alters the in vivo expression of Cx36 by the insulin-producing ÎČ-cells through ICER-1/ICER-1Îł overexpression. This mechanism may contribute to the reduced glucose sensitivity and altered insulin secretion, which contribute to the pathophysiology of diabetes

    Detector upgrade for fast MeV X-ray imaging for severe accidents experiments

    No full text
    International audienceDigital X-ray imaging systems for MeV range photon beams are based on a combination of a scintillator screen and either a camera or an amorphous silicon array. To limit dose rate on electronics and enhance imaging device lifetime, the scintillator screen can be mirror-coupled to the camera. Performances of such devices are a compromise between exposure time and spatial resolution. These technical characteristics are especially scintillator dependent. In this paper, we present, in a first part a performance evaluation of six different scintillators with a 9 MeV Bremsstrahlung X-ray source. The tested scintillators are composed of one micro-structured CsI(Tl) scintillator, two phosphor (GOS) screens and three transparent scintillators. These scintillators present a wide range of density, thickness and conversion efficiency. Each scintillator's performance is assessed based on the combination of light output (ADU number) and modulation transfer function (spatial resolution) obtained. The results are helpful to guide design and engineering of high energy imaging devices adapted to specific requirements. Then, in a second part, we show imaging performance comparison between our actual Gadox screen detector and a new CsI screen detector
    • 

    corecore