7 research outputs found

    Endommagement par le gel de pierres calcaires utilisées dans le patrimoine bâti : étude du comportement hydromécanique

    Get PDF
    Building materials of historical monuments, such as natural stone, are subject to aggressive environmental conditions, such as changes in temperature or humidity, rain, or air pollutants. This can cause changes in the structure of materials. These variations can lead to high mechanical stress resulting in significant and diverse macroscopic alterations as cracks, flaking or granular disintegration.The stone is a heterogeneous porous material, the knowledge of the microstructure, the mineralogical and physical characterizations are essential to understanding the hydro-mechanical behavior of the material during degradation. Among the different environmental conditions of alteration responsible in building materials, we are interested in freeze-thaw cycle of different types of limestone. The objective of this research is to correlate the microstructural and mineralogical properties of fresh limestone and their evolution, to their mechanical properties in cracking under freeze-thaw cycles. Five limestones of varying microstructure and mechanical properties were selected for this study: Massangis, Lens, Migné, Savonnières and Saint-Maximin stones.The evolution of the degradation of limestone is followed during accelerated aging by measuring the following properties: P-wave velocity, dynamic and static Young's modulus, resistance to uniaxial compression, toughness, total porosity and distribution of pore size access. The thermo-mechanical behavior of rocks is also studied by measurements of deformation and temperature (at surface and at center of the sample) during the freeze-thaw cycles.This research has shown that the evolution of the microstructure of weathered stones and their intrinsic mechanical properties such as toughness, determining parameter in the initiation and propagation of cracks are related. Indeed, stones resistance to stresses caused by freeze-thaw cycles depends as much on their initial mechanical performance as their porosity, especially from their pores naturally accessible to water immersion and their degrees of natural saturation.Les matériaux de construction des monuments historiques, tels que les pierres naturelles, sont soumis à des conditions environnementales agressives, comme la variation de la température ou de l'humidité, la pluie, ou encore les polluants atmosphériques. Cela peut provoquer des modifications au sein de la structure même des matériaux. Ces variations peuvent engendrer de fortes contraintes mécaniques aboutissant à des altérations macroscopiques importantes et diverses comme des fissures, des desquamations ou des désagrégations granulaires.La pierre étant un matériau poreux hétérogène, la connaissance de la microstructure, les caractérisations minéralogique et physique sont indispensables à la compréhension du comportement hydromécanique du matériau lors de dégradations. Parmi les différentes conditions environnementales responsables d'altération au sein de matériaux de construction, nous nous intéressons au phénomène de gel-dégel de différents types de pierres calcaires. L'objectif de ces travaux de recherche est de corréler les propriétés microstructurales et minéralogiques de pierres calcaires saines et leurs évolutions, avec leurs propriétés mécaniques au cours de la fissuration sous l'effet des cycles de gel-dégel. Cinq calcaires, aux propriétés microstructurales et mécaniques variées, ont été sélectionnés pour cette étude : les pierres de Massangis, de Lens, de Migné, de Savonnières et de Saint-Maximin.L'évolution de l'endommagement des pierres calcaires est suivie au cours du vieillissement accéléré par la mesure des propriétés suivantes : la vitesse des ondes P, les modules d'Young dynamiques et statiques, la résistance à la compression uniaxiale, la ténacité, la porosité totale et la distribution de la taille d'accès des pores. Le comportement thermo-mécanique des pierres est également étudié par des mesures des déformations et de la température (en surface et au centre des échantillons) pendant les cycles de gel-dégel.Ces recherches ont montré que l'évolution de la microstructure des pierres altérées et leurs propriétés mécaniques intrinsèques comme la ténacité, paramètre déterminant dans l'amorçage et la propagation de fissures, sont liés. En effet, la résistance des pierres aux contraintes provoquées par les cycles de gel-dégel dépend autant de leurs performances mécaniques initiales que de leurs porosités, notamment la part de leurs porosités naturellement accessible à l'eau par immersion et de leurs degrés de saturation naturelle

    Frost damage on limestone used in the built heritage : study of hydromechanical behavior

    No full text
    Les matériaux de construction des monuments historiques, tels que les pierres naturelles, sont soumis à des conditions environnementales agressives, comme la variation de la température ou de l'humidité, la pluie, ou encore les polluants atmosphériques. Cela peut provoquer des modifications au sein de la structure même des matériaux. Ces variations peuvent engendrer de fortes contraintes mécaniques aboutissant à des altérations macroscopiques importantes et diverses comme des fissures, des desquamations ou des désagrégations granulaires.La pierre étant un matériau poreux hétérogène, la connaissance de la microstructure, les caractérisations minéralogique et physique sont indispensables à la compréhension du comportement hydromécanique du matériau lors de dégradations. Parmi les différentes conditions environnementales responsables d'altération au sein de matériaux de construction, nous nous intéressons au phénomène de gel-dégel de différents types de pierres calcaires. L'objectif de ces travaux de recherche est de corréler les propriétés microstructurales et minéralogiques de pierres calcaires saines et leurs évolutions, avec leurs propriétés mécaniques au cours de la fissuration sous l'effet des cycles de gel-dégel. Cinq calcaires, aux propriétés microstructurales et mécaniques variées, ont été sélectionnés pour cette étude : les pierres de Massangis, de Lens, de Migné, de Savonnières et de Saint-Maximin.L'évolution de l'endommagement des pierres calcaires est suivie au cours du vieillissement accéléré par la mesure des propriétés suivantes : la vitesse des ondes P, les modules d'Young dynamiques et statiques, la résistance à la compression uniaxiale, la ténacité, la porosité totale et la distribution de la taille d'accès des pores. Le comportement thermo-mécanique des pierres est également étudié par des mesures des déformations et de la température (en surface et au centre des échantillons) pendant les cycles de gel-dégel.Ces recherches ont montré que l'évolution de la microstructure des pierres altérées et leurs propriétés mécaniques intrinsèques comme la ténacité, paramètre déterminant dans l'amorçage et la propagation de fissures, sont liés. En effet, la résistance des pierres aux contraintes provoquées par les cycles de gel-dégel dépend autant de leurs performances mécaniques initiales que de leurs porosités, notamment la part de leurs porosités naturellement accessible à l'eau par immersion et de leurs degrés de saturation naturelle.Building materials of historical monuments, such as natural stone, are subject to aggressive environmental conditions, such as changes in temperature or humidity, rain, or air pollutants. This can cause changes in the structure of materials. These variations can lead to high mechanical stress resulting in significant and diverse macroscopic alterations as cracks, flaking or granular disintegration.The stone is a heterogeneous porous material, the knowledge of the microstructure, the mineralogical and physical characterizations are essential to understanding the hydro-mechanical behavior of the material during degradation. Among the different environmental conditions of alteration responsible in building materials, we are interested in freeze-thaw cycle of different types of limestone. The objective of this research is to correlate the microstructural and mineralogical properties of fresh limestone and their evolution, to their mechanical properties in cracking under freeze-thaw cycles. Five limestones of varying microstructure and mechanical properties were selected for this study: Massangis, Lens, Migné, Savonnières and Saint-Maximin stones.The evolution of the degradation of limestone is followed during accelerated aging by measuring the following properties: P-wave velocity, dynamic and static Young's modulus, resistance to uniaxial compression, toughness, total porosity and distribution of pore size access. The thermo-mechanical behavior of rocks is also studied by measurements of deformation and temperature (at surface and at center of the sample) during the freeze-thaw cycles.This research has shown that the evolution of the microstructure of weathered stones and their intrinsic mechanical properties such as toughness, determining parameter in the initiation and propagation of cracks are related. Indeed, stones resistance to stresses caused by freeze-thaw cycles depends as much on their initial mechanical performance as their porosity, especially from their pores naturally accessible to water immersion and their degrees of natural saturation

    E2F7 and E2F8 promote angiogenesis through transcriptional activation of VEGFA in cooperation with HIF1

    No full text
    The E2F family of transcription factors plays an important role in controlling cell-cycle progression. While this is their best-known function, we report here novel functions for the newest members of the E2F family, E2F7 and E2F8 (E2F7/8). We show that simultaneous deletion of E2F7/8 in zebrafish and mice leads to severe vascular defects during embryonic development. Using a panel of transgenic zebrafish with fluorescent-labelled blood vessels, we demonstrate that E2F7/8 are essential for proper formation of blood vessels. Despite their classification as transcriptional repressors, we provide evidence for a molecular mechanism through which E2F7/8 activate the transcription of the vascular endothelial growth factor A (VEGFA), a key factor in guiding angiogenesis. We show that E2F7/8 directly bind and stimulate the VEGFA promoter independent of canonical E2F binding elements. Instead, E2F7/8 form a transcriptional complex with the hypoxia inducible factor 1 (HIF1) to stimulate VEGFA promoter activity. These results uncover an unexpected link between E2F7/8 and the HIF1-VEGFA pathway providing a molecular mechanism by which E2F7/8 control angiogenesis. The EMBO Journal (2012) 31, 3871-3884. doi:10.1038/emboj.2012.231; Published online 17 August 201
    corecore