12 research outputs found

    Terrestrial temperature evolution of southern Africa during the late Pleistocene and Holocene:Evidence from the Mfabeni Peatland

    Get PDF
    The scarcity of suitable high-resolution archives, such as ancient natural lakes, that span beyond the Holocene, hinders long-term late Quaternary temperature reconstructions in southern Africa. Here we target two cores from Mfabeni Peatland, one of the few long continuous terrestrial archives in South Africa that reaches into the Pleistocene, to generate a composite temperature record spanning the last ∼43 kyr. The Mfabeni Peatland has previously been proven suitable for temperature and hydrological reconstructions based on pollen and geochemical proxies. Here we use branched glycerol dialkyl glycerol tetraethers (brGDGTs) preserved in the Mfabeni peatland to derive a new quantitative air temperature record for south-east Africa. Our temperature record generally follows global trends in temperature and atmospheric CO2 concentrations, but is decoupled at times. Annual air temperatures during Marine Isotope Stage (MIS) 3 were moderately high (c. 20.5 °C), but dropped by c. 5 °C during the Last Glacial Maximum, reaching a minimum at c.16–15 ka. Asynchronous with local insolation, this cooling may have resulted from reduced sea surface temperatures linked to a northward shift in the Southern Hemisphere westerly winds. Concurrent with the southward retreat of the westerlies, and increasing sea surface temperatures offshore, warming from minimum temperatures (c. 15.0 °C) to average Holocene temperatures (c. 20.0 °C) occurred across the deglaciation. This warming was briefly but prominently interrupted by a millennial-scale cooling event of c. 3 °C at c. 2.4 ka, concurrent with a sudden change in hydrological conditions. The average Holocene temperatures of c. 20.0 °C were similar to those reconstructed for MIS 3, but after the 2.4 ka cooling period, air temperatures in the Mfabeni peat recovered and steadily increased towards the present. In summary, our record demonstrates that land temperature in eastern South Africa is highly sensitive to global drivers as well as nearby sea surface temperatures

    The Financial Education Tool Kit: Helping Teachers Meet State-Mandated Personal Finance Requirements

    Get PDF
    States are recognizing the need for personal financial education and have begun requiring it as a condition for high school graduation. Responding to teacher requests to help them meet state-mandated financial education requirements, FCS educators in the Oklahoma Cooperative Extension Service developed a financial education tool kit. This article describes the contents of the tool kit and its many uses

    Late Pleistocene to Holocene GDGT data in Mfabeni peat, South Africa

    No full text
    This data set includes integrated peak areas for all measured GDGTs in two cores from Mfabeni, such as tetra-, penta-, and hexamethylated 5-methyl branched GDGTs as well as isoprenoid GDGTs. The data were used to calculate mean annual air temperature (MAATpeat) during the late Quaternary in southeast Africa, and the lowess smoothed composite MAATpeat is included in this data set

    Terrestrial temperature evolution of southern Africa during the late Pleistocene and Holocene: Evidence from the Mfabeni Peatland

    Get PDF
    The scarcity of suitable high-resolution archives, such as ancient natural lakes, that span beyond the Holocene, hinders long-term late Quaternary temperature reconstructions in southern Africa. Here we target two cores from Mfabeni Peatland, one of the few long continuous terrestrial archives in South Africa that reaches into the Pleistocene, to generate a composite temperature record spanning the last ∼43 kyr. The Mfabeni Peatland has previously been proven suitable for temperature and hydrological reconstructions based on pollen and geochemical proxies. Here we use branched glycerol dialkyl glycerol tetraethers (brGDGTs) preserved in the Mfabeni peatland to derive a new quantitative air temperature record for south-east Africa. Our temperature record generally follows global trends in temperature and atmospheric CO2 concentrations, but is decoupled at times. Annual air temperatures during Marine Isotope Stage (MIS) 3 were moderately high (c. 20.5 °C), but dropped by c. 5 °C during the Last Glacial Maximum, reaching a minimum at c.16–15 ka. Asynchronous with local insolation, this cooling may have resulted from reduced sea surface temperatures linked to a northward shift in the Southern Hemisphere westerly winds. Concurrent with the southward retreat of the westerlies, and increasing sea surface temperatures offshore, warming from minimum temperatures (c. 15.0 °C) to average Holocene temperatures (c. 20.0 °C) occurred across the deglaciation. This warming was briefly but prominently interrupted by a millennial-scale cooling event of c. 3 °C at c. 2.4 ka, concurrent with a sudden change in hydrological conditions. The average Holocene temperatures of c. 20.0 °C were similar to those reconstructed for MIS 3, but after the 2.4 ka cooling period, air temperatures in the Mfabeni peat recovered and steadily increased towards the present. In summary, our record demonstrates that land temperature in eastern South Africa is highly sensitive to global drivers as well as nearby sea surface temperatures

    Terrestrial temperature evolution of southern Africa during the late Pleistocene and Holocene: Evidence from the Mfabeni Peatland

    No full text
    The scarcity of suitable high-resolution archives, such as ancient natural lakes, that span beyond the Holocene, hinders long-term late Quaternary temperature reconstructions in southern Africa. Here we target two cores from Mfabeni Peatland, one of the few long continuous terrestrial archives in South Africa that reaches into the Pleistocene, to generate a composite temperature record spanning the last ∼43 kyr. The Mfabeni Peatland has previously been proven suitable for temperature and hydrological reconstructions based on pollen and geochemical proxies. Here we use branched glycerol dialkyl glycerol tetraethers (brGDGTs) preserved in the Mfabeni peatland to derive a new quantitative air temperature record for south-east Africa. Our temperature record generally follows global trends in temperature and atmospheric CO2 concentrations, but is decoupled at times. Annual air temperatures during Marine Isotope Stage (MIS) 3 were moderately high (c. 20.5 °C), but dropped by c. 5 °C during the Last Glacial Maximum, reaching a minimum at c.16–15 ka. Asynchronous with local insolation, this cooling may have resulted from reduced sea surface temperatures linked to a northward shift in the Southern Hemisphere westerly winds. Concurrent with the southward retreat of the westerlies, and increasing sea surface temperatures offshore, warming from minimum temperatures (c. 15.0 °C) to average Holocene temperatures (c. 20.0 °C) occurred across the deglaciation. This warming was briefly but prominently interrupted by a millennial-scale cooling event of c. 3 °C at c. 2.4 ka, concurrent with a sudden change in hydrological conditions. The average Holocene temperatures of c. 20.0 °C were similar to those reconstructed for MIS 3, but after the 2.4 ka cooling period, air temperatures in the Mfabeni peat recovered and steadily increased towards the present. In summary, our record demonstrates that land temperature in eastern South Africa is highly sensitive to global drivers as well as nearby sea surface temperatures

    Nutrient_Enrichment_Dataset.csv

    No full text
    Soil carbon stocks measured directly in each of the nutrient enrichment plots across all of the sites. The treatments included Control (C), Nitrogen (N), Phosphorus (P), Potassium (K), Nitrogen+Phosphorus (NP), Nitrogen+Potassium (PK), Phosphorus+Potassium (PK) and all nutrients combined (NPK). The code used to analyze these data and generate graphs is all included in Supplementary material

    Data from: Sensitivity of global soil carbon stocks to combined nutrient enrichment

    No full text
    Soil stores approximately twice as much carbon as the atmosphere and fluctuations in the size of the soil carbon pool directly influence climate conditions. We used the Nutrient Network global change experiment to examine how anthropogenic nutrient enrichment might influence grassland soil carbon storage at a global scale. In isolation, enrichment of nitrogen and phosphorous had minimal impacts on soil carbon storage. However, when these nutrients were added in combination with potassium and micronutrients, soil carbon stocks changed considerably, with an average increase of 0.04 KgCm−2 year−1 (standard deviation 0.18 KgCm−2 year−1). These effects did not correlate with changes in primary productivity, suggesting that soil carbon decomposition may have been restricted. Although nutrient enrichment caused soil carbon gains most dry, sandy regions, considerable absolute losses of soil carbon may occur in high‐latitude regions that store the majority of the world's soil carbon. These mechanistic insights into the sensitivity of grassland carbon stocks to nutrient enrichment can facilitate biochemical modelling efforts to project carbon cycling under future climate scenarios

    Mapping carbon accumulation potential from global natural forest regrowth

    No full text
    To constrain global warming, we must strongly curtail greenhouse gas emissions and capture excess atmospheric carbon dioxide1,2. Regrowing natural forests is a prominent strategy for capturing additional carbon3, but accurate assessments of its potential are limited by uncertainty and variability in carbon accumulation rates2,3. To assess why and where rates differ, here we compile 13,112 georeferenced measurements of carbon accumulation. Climatic factors explain variation in rates better than land-use history, so we combine the field measurements with 66 environmental covariate layers to create a global, one-kilometre-resolution map of potential aboveground carbon accumulation rates for the first 30 years of natural forest regrowth. This map shows over 100-fold variation in rates across the globe, and indicates that default rates from the Intergovernmental Panel on Climate Change (IPCC)4,5 may underestimate aboveground carbon accumulation rates by 32 per cent on average and do not capture eight-fold variation within ecozones. Conversely, we conclude that maximum climate mitigation potential from natural forest regrowth is 11 per cent lower than previously reported3 owing to the use of overly high rates for the location of potential new forest. Although our data compilation includes more studies and sites than previous efforts, our results depend on data availability, which is concentrated in ten countries, and data quality, which varies across studies. However, the plots cover most of the environmental conditions across the areas for which we predicted carbon accumulation rates (except for northern Africa and northeast Asia). We therefore provide a robust and globally consistent tool for assessing natural forest regrowth as a climate mitigation strategy
    corecore