170 research outputs found

    practical considerations for diagnosis and management of patients and carriers

    Get PDF
    Abstract Newly diagnosed children and adults with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) need to be screened for presence of a genetic predisposition syndrome because the information on the genetic status is likely to influence clinical care and management of the patient and the family. Scenarios in which genetic counseling is advised include presence of a mutation on somatic screen that can be associated with a germline predisposition, hematologic or cytogenetic characteristics suggestive of an underlying susceptibility syndrome, non-hematological phenotype suspicious for a familial condition, history of previous malignancy, or a family history of cancer, cytopenia, autoimmunity, or organ-system manifestation fitting a predisposition syndrome. With increasing complexity on phenotypes, genetics, and leukemia risk of the recently recognized predisposition syndromes, specialized clinics for hereditary hematologic malignancies have been initiated to guide genetic testing and support hematologists integrating genetic data into therapeutic strategies and clinical care. Recommendations for surveillance of carriers are currently based on expert opinion and subject to future modification when a more complete picture for the distinct genetic entities will arise

    Comprehensive Analyses of Coagulation Parameters in Patients with Vascular Anomalies.

    Get PDF
    BACKGROUND Vascular anomalies comprise a diverse group of rare diseases with altered blood flow and are often associated with coagulation disorders. The most common example is a localized intravascular coagulopathy in venous malformations leading to elevated D-dimers. In severe cases, this may progress to a disseminated intravascular coagulopathy with subsequent consumption of fibrinogen and thrombocytes predisposing to serious bleeding. A separate coagulopathy is the Kasabach-Merritt phenomenon in kaposiform hemangioendothelioma characterized by platelet trapping leading to thrombocytopenia and eventually consumptive coagulopathy. Our previous work showed impaired von Willebrand factor and platelet aggregometry due to abnormal blood flow, i.e., in ventricular assist devices or extracorporeal membrane oxygenation. With altered blood flow also present in vascular anomalies, we hypothesized that, in particular, the von Willebrand factor parameters and the platelet function may be similarly impacted. METHODS We prospectively recruited 73 patients with different vascular anomaly entities and analyzed their coagulation parameters. RESULTS Acquired von Willebrand syndrome was observed in both of our patients with Kasabach-Merritt phenomenon. In six out of nine patients with complex lymphatic anomalies, both the vWF antigen and activity were upregulated. Platelet aggregometry was impaired in both patients with Kasabach-Merritt phenomenon and in seven out of eight patients with an arteriovenous malformation. CONCLUSIONS The analysis of coagulation parameters in our patients with vascular anomalies advanced our understanding of the underlying pathophysiologies of the observed coagulopathies. This may lead to new treatment options for the, in part, life-threatening bleeding risks in these patients in the future

    Insulin degludec improves long-term glycaemic control similarly to insulin glargine but with fewer hypoglycaemic episodes in patients with advanced type 2 diabetes on basal-bolus insulin therapy.

    Get PDF
    The aim of the present study was to compare the long-term safety and efficacy of insulin degludec with those of insulin glargine in patients with advanced type 2 diabetes (T2D) over 78 weeks (the 52-week main trial and a 26-week extension). Patients were randomized to once-daily insulin degludec or insulin glargine, with mealtime insulin aspart ± metformin ± pioglitazone, and titrated to pre-breakfast plasma glucose values of 3.9-4.9 mmol/l (70-88 mg/dl). After 78 weeks, the overall rate of hypoglycaemia was 24% lower (p = 0.011) and the rate of nocturnal hypoglycaemia was 31% lower (p = 0.016) with insulin degludec in the extension trial set, while both groups of patients achieved similar glycaemic control. Rates of adverse events and total insulin doses were similar for both groups in the safety analysis set. During 18 months of treatment, insulin degludec + mealtime insulin aspart ± oral antidiabetic drugs in patients with T2D improves glycaemic control similarly, but confers lower risks of overall and nocturnal hypoglycaemia than with insulin glargine treatment

    Long non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia

    Get PDF
    Juvenile myelomonocytic leukemia (JMML) treatment primarily relies on hematopoietic stem cell transplantation and results in long-term overall survival of 50-60%, demonstrating a need to develop novel treatments. Dysregulation of the non-coding RNA transcriptome has been demonstrated before in this rare and unique disorder of early childhood. In this study, we investigated the therapeutic potential of targeting overexpressed long non-coding RNAs (lncRNAs) in JMML. Total RNA sequencing of bone marrow and peripheral blood mononuclear cell preparations from 19 untreated JMML patients and three healthy children revealed 185 differentially expressed lncRNA genes (131 up- and 54 downregulated). LNA GapmeRs were designed for 10 overexpressed and validated lncRNAs. Molecular knockdown (>= 70% compared to mock control) after 24 h of incubation was observed with two or more independent GapmeRs in 6 of them. For three lncRNAs (lnc-THADA-4, lnc-ACOT9-1 and NRIR) knockdown resulted in a significant decrease of cell viability after 72 h of incubation in primary cultures of JMML mononuclear cells, respectively. Importantly, the extent of cellular damage correlated with the expression level of the lncRNA of interest. In conclusion, we demonstrated in primary JMML cell cultures that knockdown of overexpressed lncRNAs such as lnc-THADA-4, lnc-ACOT9-1 and NRIR may be a feasible therapeutic strategy

    LIN28B overexpression defines a novel fetal-like subgroup of juvenile myelomonocytic leukemia

    Get PDF
    Juvenile myelomonocytic leukemia (JMML) is a rare and aggressive stem cell disease of early childhood. RAS activation constitutes the core component of oncogenic signaling. In addition, leukemic blasts in one-fourth of JMML patients present with monosomy 7, and more than half of patients show elevated age-adjusted fetal hemoglobin (HbF) levels. Hematopoietic stem cell transplantation is the current standard of care and results in an event-free survival rate of 50% to 60%, indicating that novel molecular-driven therapeutic options are urgently needed. Using gene expression profiling in a series of 82 patient samples, we aimed at understanding the molecular biology behind JMML and identified a previously unrecognized molecular subgroup characterized by high LIN28B expression. LIN28B over expression was significantly correlated with higher HbF levels, whereas patients with monosomy 7 seldom showed enhanced LIN28B expression. This finding gives a biological explanation of why patients with monosomy7 are rarely diagnosed with high age-adjusted HbF levels. In addition, this new fetal-like JMML subgroup presented with reduced levels of most members of the let-7 microRNA family and showed characteristic overexpression of genes involved in fetal hematopoiesis and stem cell self-renewal. Lastly, high LIN28B expression was associated with poor clinical outcome in our JMML patient series but was not independent from other prognostic factors such as age and age-adjusted HbF levels. In conclusion, we identified elevated LIN28B expression as a hallmark of a novel fetal-like subgroup in JMM

    Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans

    Get PDF
    It is well established that somatic genomic changes can influence phenotypes in cancer, but the role of adaptive changes in developmental disorders is less well understood. Here we have used next-generation sequencing approaches to identify de novo heterozygous mutations in sterile α motif domain–containing protein 9 (SAMD9, located on chromosome 7q21.2) in 8 children with a multisystem disorder termed MIRAGE syndrome that is characterized by intrauterine growth restriction (IUGR) with gonadal, adrenal, and bone marrow failure, predisposition to infections, and high mortality. These mutations result in gain of function of the growth repressor product SAMD9. Progressive loss of mutated SAMD9 through the development of monosomy 7 (–7), deletions of 7q (7q–), and secondary somatic loss-of-function (nonsense and frameshift) mutations in SAMD9 rescued the growth-restricting effects of mutant SAMD9 proteins in bone marrow and was associated with increased length of survival. However, 2 patients with –7 and 7q– developed myelodysplastic syndrome, most likely due to haploinsufficiency of related 7q21.2 genes. Taken together, these findings provide strong evidence that progressive somatic changes can occur in specific tissues and can subsequently modify disease phenotype and influence survival. Such tissue-specific adaptability may be a more common mechanism modifying the expression of human genetic conditions than is currently recognized

    Autologous chondrocyte implantation-derived synovial fluids display distinct responder and non-responder proteomic profiles

    Get PDF
    Hulme, Charlotte H. & Wilson, Emma L. - Equal contributorsBackground Autologous chondrocyte implantation (ACI) can be used in the treatment of focal cartilage injuries to prevent the onset of osteoarthritis (OA). However, we are yet to understand fully why some individuals do not respond well to this intervention. Identification of a reliable and accurate biomarker panel that can predict which patients are likely to respond well to ACI is needed in order to assign the patient to the most appropriate therapy. This study aimed to compare the baseline and mid-treatment proteomic profiles of synovial fluids (SFs) obtained from responders and non-responders to ACI. Methods SFs were derived from 14 ACI responders (mean Lysholm improvement of 33 (17–54)) and 13 non-responders (mean Lysholm decrease of 14 (4–46)) at the two stages of surgery (cartilage harvest and chondrocyte implantation). Label-free proteome profiling of dynamically compressed SFs was used to identify predictive markers of ACI success or failure and to investigate the biological pathways involved in the clinical response to ACI. Results Only 1 protein displayed a ≥2.0-fold differential abundance in the preclinical SF of ACI responders versus non-responders. However, there is a marked difference between these two groups with regard to their proteome shift in response to cartilage harvest, with 24 and 92 proteins showing ≥2.0-fold differential abundance between Stages I and II in responders and non-responders, respectively. Proteomic data has been uploaded to ProteomeXchange (identifier: PXD005220). We have validated two biologically relevant protein changes associated with this response, demonstrating that matrix metalloproteinase 1 was prominently elevated and S100 calcium binding protein A13 was reduced in response to cartilage harvest in non-responders. Conclusions The differential proteomic response to cartilage harvest noted in responders versus non-responders is completely novel. Our analyses suggest several pathways which appear to be altered in non-responders that are worthy of further investigation to elucidate the mechanisms of ACI failure. These protein changes highlight many putative biomarkers that may have potential for prediction of ACI treatment success
    • …
    corecore