198 research outputs found

    5G 3GPP-like Channel Models for Outdoor Urban Microcellular and Macrocellular Environments

    Get PDF
    For the development of new 5G systems to operate in bands up to 100 GHz, there is a need for accurate radio propagation models at these bands that currently are not addressed by existing channel models developed for bands below 6 GHz. This document presents a preliminary overview of 5G channel models for bands up to 100 GHz. These have been derived based on extensive measurement and ray tracing results across a multitude of frequencies from 6 GHz to 100 GHz, and this document describes an initial 3D channel model which includes: 1) typical deployment scenarios for urban microcells (UMi) and urban macrocells (UMa), and 2) a baseline model for incorporating path loss, shadow fading, line of sight probability, penetration and blockage models for the typical scenarios. Various processing methodologies such as clustering and antenna decoupling algorithms are also presented.Comment: To be published in 2016 IEEE 83rd Vehicular Technology Conference Spring (VTC 2016-Spring), Nanjing, China, May 201

    The Heliospheric Plasma Sheet Observed in situ by Three Spacecraft over Four Solar Rotations

    Get PDF
    In this paper we present in situ observations of the heliospheric plasma sheet (HPS) from STEREO-A, Wind, and STEREO-B over four solar rotations in the declining phase of Solar Cycle 23, covering late March through late June 2007. During this time period the three spacecraft were located in the ecliptic plane, and were gradually separating in heliographic longitude from about 3 degrees to 14 degrees. Crossings of the HPS were identified using the following criteria: reversal of the interplanetary magnetic field sector, enhanced proton density, and local minima in both the proton specific entropy argument and in the alpha particle-to-proton number density ratio (N a/N p). Two interplanetary coronal mass ejections (ICMEs) were observed during the third solar rotation of our study period, which disrupted the HPS from its quasi-stationary state. We find differences in the in situ proton parameters at the HPS between the three spacecraft despite temporal separations of less than one day. We attribute these differences to both small separations in heliographic latitude and radial evolution of the solar wind leading to the development of compression regions associated with stream interaction regions (SIRs). We also observed a modest enhancement in the density of iron ions at the HPS

    In-situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope

    Full text link
    We report electronic measurements on high-quality graphene nanoconstrictions (GNCs) fabricated in a transmission electron microscope (TEM), and the first measurements on GNC conductance with an accurate measurement of constriction width down to 1 nm. To create the GNCs, freely-suspended graphene ribbons were fabricated using few-layer graphene grown by chemical vapor deposition. The ribbons were loaded into the TEM, and a current-annealing procedure was used to clean the material and improve its electronic characteristics. The TEM beam was then used to sculpt GNCs to a series of desired widths in the range 1 - 700 nm; after each sculpting step, the sample was imaged by TEM and its electronic properties measured in-situ. GNC conductance was found to be remarkably high, comparable to that of exfoliated graphene samples of similar size. The GNC conductance varied with width approximately as, where w is the constriction width in nanometers. GNCs support current densities greater than 120 \muA/nm2, two orders of magnitude higher than has been previously reported for graphene nanoribbons and 2000 times higher than copper.Comment: 17 pages, 4 figures. Accepted by Nano Letter

    Genome-Wide Analysis of Glucocorticoid Receptor Binding Regions in Adipocytes Reveal Gene Network Involved in Triglyceride Homeostasis

    Get PDF
    Glucocorticoids play important roles in the regulation of distinct aspects of adipocyte biology. Excess glucocorticoids in adipocytes are associated with metabolic disorders, including central obesity, insulin resistance and dyslipidemia. To understand the mechanisms underlying the glucocorticoid action in adipocytes, we used chromatin immunoprecipitation sequencing to isolate genome-wide glucocorticoid receptor (GR) binding regions (GBRs) in 3T3-L1 adipocytes. Furthermore, gene expression analyses were used to identify genes that were regulated by glucocorticoids. Overall, 274 glucocorticoid-regulated genes contain or locate nearby GBR. We found that many GBRs were located in or nearby genes involved in triglyceride (TG) synthesis (Scd-1, 2, 3, GPAT3, GPAT4, Agpat2, Lpin1), lipolysis (Lipe, Mgll), lipid transport (Cd36, Lrp-1, Vldlr, Slc27a2) and storage (S3-12). Gene expression analysis showed that except for Scd-3, the other 13 genes were induced in mouse inguinal fat upon 4-day glucocorticoid treatment. Reporter gene assays showed that except Agpat2, the other 12 glucocorticoid-regulated genes contain at least one GBR that can mediate hormone response. In agreement with the fact that glucocorticoids activated genes in both TG biosynthetic and lipolytic pathways, we confirmed that 4-day glucocorticoid treatment increased TG synthesis and lipolysis concomitantly in inguinal fat. Notably, we found that 9 of these 12 genes were induced in transgenic mice that have constant elevated plasma glucocorticoid levels. These results suggested that a similar mechanism was used to regulate TG homeostasis during chronic glucocorticoid treatment. In summary, our studies have identified molecular components in a glucocorticoid-controlled gene network involved in the regulation of TG homeostasis in adipocytes. Understanding the regulation of this gene network should provide important insight for future therapeutic developments for metabolic diseases

    Optical tweezers and non-ratiometric fluorescent-dye-based studies of respiration in sperm mitochondria

    Get PDF
    The purpose of this study is to investigate how the mitochondrial membrane potential affects sperm motility using laser tweezers and a non-ratiometric fluorescent probe, DiOC6(3). A 1064nm Nd:YVO4 continuous wave laser was used to trap motile sperm at a power of 450mW in the trap spot. Using customized tracking software, the curvilinear velocity (VCL) and the escape force from the laser tweezers weremeasured. Human (Homo sapiens), dog (Canis lupis familiaris) and drill (Mandrillus leucophaeus) sperm were treated with DiOC6(3) to measure the membrane potential in the mitochondria-rich sperm midpieces. Sperm from all three species exhibited an increase in fluorescence when treated with the DiOC6(3). When a cyanide inhibitor (CCCP) of aerobic respiration was applied, sperm of all three species exhibited a reduction in fluorescence to pre-dye levels. With respect to VCL and escape force, the CCCP had no effect on dog or human sperm, suggesting a major reliance upon anaerobic respiration (glycolysis) for ATP in these two species. Based on the preliminary study on drill sperm, CCCP caused a drop in the VCL, suggesting potential reliance on both glycolysis and aerobic respiration for motility. The results demonstrate that optical trapping in combination with DiOC 6(3) is an effective way to study sperm motility and energetics. Β© 2011 IOP Publishing Ltd

    Prevalence of JC Virus in Chinese Patients with Colorectal Cancer

    Get PDF
    BACKGROUND: JCV is a DNA polyomavirus very well adapted to humans. Although JCV DNA has been detected in colorectal cancers (CRC), the association between JCV and CRC remains controversial. In China, the presence of JCV infection in CRC patients has not been reported. Here, we investigated JCV infection and viral DNA load in Chinese CRC patients and to determine whether the JCV DNA in peripheral blood (PB) can be used as a diagnostic marker for JCV-related CRC. METHODOLOGY/PRINCIPAL FINDINGS: Tumor tissues, non-cancerous tumor-adjacent tissues and PB samples were collected from 137 CRC patients. In addition, 80 normal colorectal tissue samples from patients without CRC and PB samples from 100 healthy volunteers were also harvested as controls. JCV DNA was detected by nested PCR and glass slide-based dot blotting. Viral DNA load of positive samples were determined by quantitative real-time PCR. JCV DNA was detected in 40.9% (56/137) of CRC tissues at a viral load of 49.1 to 10.3Γ—10(4) copies/Β΅g DNA. Thirty-four (24.5%) non-cancerous colorectal tissues (192.9 to 4.4Γ—10(3) copies/Β΅g DNA) and 25 (18.2%) PB samples (81.3 to 4.9Γ—10(3) copies/Β΅g DNA) from CRC patients were positive for JCV. Tumor tissues had higher levels of JCV than non-cancerous tissues (Pβ€Š=β€Š0.003) or PB samples (P<0.001). No correlation between the presence of JCV and demographic or medical characteristics was observed. The JCV prevalence in PB samples was significantly associated with the JCV status in tissue samples (P<0.001). Eleven (13.8%) normal colorectal tissues and seven (7.0%) PB samples from healthy donors were positive for JCV. CONCLUSIONS/SIGNIFICANCE: JCV infection is frequently present in colorectal tumor tissues of CRC patients. Although the association between JCV presence in PB samples and JCV status in tissue samples was identified in this study, whether PB JCV detection can serve as a marker for JCV status of CRC requires further study

    ZC4H2, an XLID gene, is required for the generation of a specific subset of CNS interneurons

    Get PDF
    Miles-Carpenter syndrome (MCS) was described in 1991 as an XLID syndrome with fingertip arches and contractures and mapped to proximal Xq. Patients had microcephaly, short stature, mild spasticity, thoracic scoliosis, hyperextendable MCP joints, rocker-bottom feet, hyperextended elbows and knees. A mutation, p.L66H, in ZC4H2, was identified in a XLID resequencing project. Additional screening of linked families and next generation sequencing of XLID families identified three ZC4H2 mutations: p.R18K, p.R213W and p.V75in15aa. The families shared some relevant clinical features. In silico modeling of the mutant proteins indicated all alterations would destabilize the protein. Knockout mutations in zc4h2 were created in zebrafish and homozygous mutant larvae exhibited abnormal swimming, increased twitching, defective eye movement and pectoral fin contractures. Because several of the behavioral defects were consistent with hyperactivity, we examined the underlying neuronal defects and found that sensory neurons and motoneurons appeared normal. However, we observed a striking reduction in GABAergic interneurons. Analysis of cell-type-specificmarkers showed a specific loss of V2 interneurons in the brain and spinal cord, likely arising from mis-specification of neural progenitors. Injected human wt ZC4H2 rescued the mutant phenotype. Mutant zebrafish injectedwith human p.L66H or p.R213W mRNA failed to be rescued, while the p.R18K mRNA was able to rescue the interneuron defect. Our findings clearly support ZC4H2 as a novel XLID gene with a required function in interneuron development. Loss of function of ZC4H2 thus likely results in altered connectivity ofmany brain and spinal circuits

    Identification of Anti-Malarial Compounds as Novel Antagonists to Chemokine Receptor CXCR4 in Pancreatic Cancer Cells

    Get PDF
    Despite recent advances in targeted therapies, patients with pancreatic adenocarcinoma continue to have poor survival highlighting the urgency to identify novel therapeutic targets. Our previous investigations have implicated chemokine receptor CXCR4 and its selective ligand CXCL12 in the pathogenesis and progression of pancreatic intraepithelial neoplasia and invasive pancreatic cancer; hence, CXCR4 is a promising target for suppression of pancreatic cancer growth. Here, we combined in silico structural modeling of CXCR4 to screen for candidate anti-CXCR4 compounds with in vitro cell line assays and identified NSC56612 from the National Cancer Institute's (NCI) Open Chemical Repository Collection as an inhibitor of activated CXCR4. Next, we identified that NSC56612 is structurally similar to the established anti-malarial drugs chloroquine and hydroxychloroquine. We evaluated these compounds in pancreatic cancer cells in vitro and observed specific antagonism of CXCR4-mediated signaling and cell proliferation. Recent in vivo therapeutic applications of chloroquine in pancreatic cancer mouse models have demonstrated decreased tumor growth and improved survival. Our results thus provide a molecular target and basis for further evaluation of chloroquine and hydroxychloroquine in pancreatic cancer. Historically safe in humans, chloroquine and hydroxychloroquine appear to be promising agents to safely and effectively target CXCR4 in patients with pancreatic cancer

    The logic of the floral transition: reverse-engineering the switch controlling the identity of lateral organs

    Get PDF
    Much laboratory work has been carried out to determine the gene regulatory network (GRN) that results in plant cells becoming flowers instead of leaves. However, this also involves the spatial distribution of different cell types, and poses the question of whether alternative networks could produce the same set of observed results. This issue has been addressed here through a survey of the published intercellular distribution of expressed regulatory genes and techniques both developed and applied to Boolean network models. This has uncovered a large number of models which are compatible with the currently available data. An exhaustive exploration had some success but proved to be unfeasible due to the massive number of alternative models, so genetic programming algorithms have also been employed. This approach allows exploration on the basis of both data-fitting criteria and parsimony of the regulatory processes, ruling out biologically unrealistic mechanisms. One of the conclusions is that, despite the multiplicity of acceptable models, an overall structure dominates, with differences mostly in alternative fine-grained regulatory interactions. The overall structure confirms the known interactions, including some that were not present in the training set, showing that current data are sufficient to determine the overall structure of the GRN. The model stresses the importance of relative spatial location, through explicit references to this aspect. This approach also provides a quantitative indication of how likely some regulatory interactions might be, and can be applied to the study of other developmental transitions
    • …
    corecore