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Abstract

Much laboratory work has been carried out to determine the gene regulatory network (GRN)

that results in plant cells becoming flowers instead of leaves. However, this also involves the

spatial distribution of different cell types, and poses the question of whether alternative net-

works could produce the same set of observed results. This issue has been addressed here

through a survey of the published intercellular distribution of expressed regulatory genes and

techniques both developed and applied to Boolean network models. This has uncovered a

large number of models which are compatible with the currently available data. An exhaus-

tive exploration had some success but proved to be unfeasible due to the massive number of

alternative models, so genetic programming algorithms have also been employed. This

approach allows exploration on the basis of both data-fitting criteria and parsimony of the

regulatory processes, ruling out biologically unrealistic mechanisms. One of the conclusions

is that, despite the multiplicity of acceptable models, an overall structure dominates, with dif-

ferences mostly in alternative fine-grained regulatory interactions. The overall structure con-

firms the known interactions, including some that were not present in the training set,

showing that current data are sufficient to determine the overall structure of the GRN. The

model stresses the importance of relative spatial location, through explicit references to this

aspect. This approach also provides a quantitative indication of how likely some regulatory

interactions might be, and can be applied to the study of other developmental transitions.

Author summary

Complex organisms develop following a genetic program specifying how their cells differ-

entiate into organs with different specialized functions. Details of these mechanisms are

incomplete, and aspects might not be correct. These genetic programs can be represented

by simple computer programs processing input data into outputs, as a way of finding out

more about cell differentiation. Our strategy has entailed generating and analyzing many

programs whose outcomes do not conflict with our current biological knowledge for any

of the documented combinations of inputs. Initial brute-force construction and evaluation

of smaller networks was not entirely successful. We go on to present arithmetic arguments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005744 September 20, 2017 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Dinh J-L, Farcot E, Hodgman C (2017)

The logic of the floral transition: Reverse-

engineering the switch controlling the identity of

lateral organs. PLoS Comput Biol 13(9): e1005744.

https://doi.org/10.1371/journal.pcbi.1005744

Editor: Pablo Padilla-Longoria, Universidad

Nacional Autónoma de México, MEXICO
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which show that it is computationally unfeasible for larger networks to check all possible

programs for complying with biological knowledge. Hence, we have employed an

approach inspired by biological evolution, namely genetic programming, with refinements

to favor the most likely and not overly complex programs. Our test case is the program

used by plants to produce flowers (a prerequisite for fruits and seeds), which is commer-

cially very important. Our technique showed that the spatial distribution of cells was cru-

cial and most of the presumed mechanism occurred in all programs, and was able both to

point out probable gaps in our biological knowledge and to suggest suitable additions. Fur-

thermore, this approach can be applied to other biological developmental programs.

Introduction

Computational approaches have become routinely used in the study of gene regulatory net-

works [1,2]. One of the fundamental key outcomes of gene-network activity is specification of

the differentiated cell types during development that lead to different tissues and organs. To

address this particular question, computational models have to capture the unfolding, both in

time and space, of the program embodied by interactions between genes, transcription factors

and other molecular complexes. This necessity to describe spatio-temporal patterns of gene

activity entails an important computational cost. In addition, laboratory techniques do not yet

exist that determine the precise spatio-temporal patterns of gene expression of multiple genes

in a single data set, making the development of such models very difficult. This paper proposes

tools designed to represent the specification of new cell identities during development, and to

fit models against incomplete data. This work focuses on the network controlling the Shoot

Apical Meristem (SAM) during the floral transition, see below. However, the methods aim to

be applicable to other systems involving cell differentiation and the underlying spatial pattern-

ing of biological tissues.

Flowers are the reproductive organs of plants. Therefore, their formation is crucial for

reproductive success. From a developmental perspective, flower formation starts with the trig-

gering of specific pathways in the founder cells of lateral organs (i.e. leaves initially), so that

they develop into flowers instead. This developmental switch is called the floral transition. It is

one of many aspects of cell-fate specification in the Shoot Apical Meristem, which comprises

multiple tissues, each with their own gene-expression profile but all produced from a single

stem-cell population. This early specification of cell types, through the interactions between

genes and hormones, enables newly formed tissues to later develop into all the aerial parts of a

plant [3,4]. The transition goes through three well-characterized stages, starting with a vegeta-

tive meristem, which produces leaves. Upon the trigger by the appearance of the protein FT,

this meristem becomes an inflorescence meristem, from which floral meristems appear that

produce flowers.

While the pathways involved in the floral transition have been reviewed [5,6] and modelled

(using Ordinary Differential Equations (ODEs) [7–9] and neural networks [10]), these studies

give little if any attention to the spatial organization of the SAM and do not include any repre-

sentation of space. The side effects of this simplification obviously include the inability to

explain how the spatial organization of the SAM is acquired, but also the prediction of unrep-

resentative gene-expression profiles, because the gene expression measurements have come

from multiple cell types. This potentially leads to the consideration of combinations of regula-

tory interactions that cannot actually occur in vivo, because the genes involved are not, in real-

ity, expressed in the same cells.

Exploration of the Boolean-model space of a developmental switch
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The present study focuses on how the gene-regulatory network of the SAM is able to deter-

mine the transition of its daughter cells into stem, leaf, flower or other cell types, based on

environmental and positional cues. To address the lack of spatial information found in previ-

ously published studies, a novel approach was required. We therefore propose a modelling

framework which includes an explicit representation of space in terms of the organs and tis-

sues found in different parts of the SAM. This is analogous to studies of invertebrate develop-

ment [11,12].

Regulations known from the literature may be ambiguous, so the proposed methodology

comprises a method for the inference of models, based on experimental data. This entailed

generating a compendium of published in situ hybridization (ISH) experiments, to describe

groups of jointly expressed genes. Models deemed plausible had to reproduce both the

observed patterns of co-expression and the known developmental transitions. This offers the

potential to explore alternatives to current thinking about the regulatory mechanisms and pre-

dict novel regulatory interactions for laboratory testing.

If ODE modelling is used, the number of possible alternative regulatory interactions, even

among a small number of genes, would lead to unfeasibly long parameter-estimation times.

This is because the uncertainty on interactions leads to a very large number of candidate

model topologies, for each of which, given the expected sloppiness of most models [13],

parameters have to be estimated multiple times. Based on typical estimation times and current

computing capability, this would take several years of computation for the complexity of the

model considered here. However, a formalism particularly well suited to this task is Boolean

modelling, which naturally handles binary (on or off) variables that accord with the resolution

of the ISH data. For a brief introduction to Boolean models, please refer to S1 Text. Even

though Boolean models are lightweight, the space of possible models for a given set of genes

remains computationally expensive to explore. In simple cases, this “model” space can be

explored through exhaustive searches, but it quickly becomes intractable as the number of pos-

sible regulatory interactions increases. In more complex cases, heuristic techniques are

required. In this work, a genetic programming algorithm has been employed to find suitable

models that explain all observed data.

Boolean network models have been used successfully to study developmental processes,

such as floral development [14], which directly follows the floral transition. By representing

genes as binary variables influencing each other, they enable us to run simulations and find

steady states of the system. These steady states can then be interpreted as cell identities or

expression profiles. The idea of matching biological observations to steady states in not new:

the logical rules built by Espinosa-Soto and colleagues resulted in steady-states matching bio-

logical observations. This work describes a related process: building up the logical rules from

the biological observations. It is similar to what has been done by La Rota et al. for the regula-

tory network controlling sepal formation [15].

Genetic algorithms have previously been used in conjunction with Boolean modelling

[11,12]. These methods operate on Boolean models at the level of truth tables, whereas genetic

programming operates at the level of equations. While truth tables can always be generated

from equations and equations can be factorized from truth tables, working on equations has

several benefits: factorizing equations is more expensive than deriving truth tables, equations

are human-readable, and constraints of complexity can be enforced on them.

This work has shown, for the network controlling SAM identity, that an exhaustive search

of all possible regulatory interactions is prohibitive. Restricting the search to models supported

by the published regulatory networks explains the steady states but, when attempting to

explain the dynamic transitions between them, result in many ambiguous regulatory events.

Using genetic programming to find models that correspond to the ISH data and known cell

Exploration of the Boolean-model space of a developmental switch
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type transitions reduced the ambiguity almost entirely, and identified other regulatory interac-

tions that have been independently confirmed in other published work.

Results

The most common representation of the core regulatory-network [5] is shown in Fig 1, though

other regulatory components have also been reviewed by Liu et al.[6]. As a necessary first verifi-

cation, one needs to assess whether this topology is sufficient to generate the observed patterns

of gene expression, or if new regulators or interactions are required. As detailed below, a given

topology, or regulatory graph, can be achieved by a large number of distinct models and one

needs to determine whether at least one of them is able to generate the required expression pat-

terns. In some cases, all the potential models can be listed exhaustively, but it will soon become

clear that, in the general case, the space to explore is too large to allow for an exhaustive search.

The cost of running an exhaustive search on the whole space of possible

models is prohibitive

Classically, three meristematic identities are distinguished: vegetative, inflorescence and floral

[3,4], and are normally defined by five main genes. SOC1 and AGL24 are markers of the inflores-

cence identity, and LFY andAP1 of the floral identity [16–19], while TFL1 inhibits the floral iden-

tity [16,20] and is a marker of vegetative identity (the inflorescence also expresses TFL1 though,

which can be attributed to the inflorescence conserving some vegetative traits). A sixth gene, FT,

encodes a mobile protein that is synthesized in leaves, moves to the SAM through the phloem

[21] and triggers the transition from the vegetative to the inflorescence and floral identities. How-

ever, owing to a memory effect, FT is not needed to maintain the inflorescence and floral identi-

ties after the floral transition [4]. Each meristematic identity has a characteristic expression

profile (Table 1). The question arises of whether or not there are any other regulatory combina-

tions of these genes than those reviewed in the literature that result in the same set of identities.

The number of models to examine is a function of the numbers of input nodes (nodes with

no inbound regulation) and internal nodes (nodes with inbound regulations). As discussed in

more detail in S1 Text, a Boolean model is a map acting on the set of all possible states (combi-

nations of “on”/”off” status of each node) of the system and can be thought of as a logic program.

From an initial state, this map determines the content of its “successor” state, with repeated ref-

erences to it resulting in dynamical evolution of the system. If a state is identical to its successor,

then it is a steady state. There are 6 nodes in total, so there are 26 = 64 possible Boolean states of

the system. To define a model of this system, a successor must be defined for each of these 64

states. The behavior of input nodes is fixed, so successors are uniquely characterized by the

behaviors of the five internal nodes. Looking naively at the full set of all Boolean models, there

are therefore 25 = 32 possible choices of successor for each of the 64 states, i.e. 3264 = 2320’
2.1096 potential models. This is more than the estimated number of atoms in the observable uni-

verse, which is ~1080. Even with a computer able to check 10 billion models per second, it would

still take ~6.1078 years. This quick estimate shows that a brute force approach is impractical and

that one needs to constrain the search space using prior biological knowledge.

The topology summarized by Fornara et al. can explain the steady states

but not the dynamic behavior

The first, obvious, constraint on the search space is to exclude models containing regulatory

interactions that are not backed by any biological evidence. As an added benefit, should solu-

tions be found, this would demonstrate that the set of evidence-backed interactions is

Exploration of the Boolean-model space of a developmental switch
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Fig 1. Common representation of the core regulatory network controlling SAM identity. Nodes

represent genes and edges represent regulatory interactions. V-shaped and T-shaped arrow heads

respectively denote activation and repression by the regulatory nodes.

https://doi.org/10.1371/journal.pcbi.1005744.g001

Exploration of the Boolean-model space of a developmental switch
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comprehensive enough to explain the behavior of the system. In an attempt to find a reason-

ably sized set of regulatory interactions that can explain the behavior of the system, the Fornara

et al. network [5] has been used as the main source of prior knowledge, without any additions

from Liu et al. [6]. This set can be determined very cheaply, as it is comprised of all the models

whose truth tables follow a pattern depending solely on the required steady states and the

topology of the network (see S2 Text).

In this work, the exhaustive search produced a set of 262,144 models exhibiting the required

steady states. This topology is therefore sufficient to explain the steady states of the system.

However, it cannot reproduce state transitions undergone by the real biological system during

development and, astonishingly, does not include the activation of SOC1 by FT (see S1 Fig),

the known trigger for flowering.

In our modelling framework, we describe transitions as the given of an initial steady state I,

a perturbation P to be applied to that steady state, and a final steady state F, resulting from the

spontaneous evolution of the system following the perturbation. Both I and F correspond to

one of the cell identities described in Fig 2 and P to the toggling of one or a few variables repre-

senting non cell-autonomous species. These species are therefore effectively the triggers of the

transitions from the modelling perspective. The associated biological interpretation is that non

cell-autonomous species form spatial patterns in the SAM that are constantly perturbed by

growth and cell divisions. This causes cells to enter some patterns and exit others, as those pat-

terns reorganize. The topology by Fornara et al. lacks a trigger with a pattern matching the

position of floral primordia, and hence cannot explain the dynamic behavior of the SAM.

Addition of two interactions yields models that are able to mimic the

changes in cell identities

The failure of this exhaustive search to explain dynamical behavior requires the model to be

enlarged. Two interactions from Liu et al., namely AP1! SOC1 and Auxin! LFY, were

added on the basis of parsimony, the intuitive fact that they are likely to counteract the irre-

sponsiveness of SOC1 to FT, and the absence of difference between the unsteady states leading

to the inflorescence and floral identities observed in our first exploration. However, this will

increase even further the number of possible models.

Constraining the search space of Boolean models with a defined network topology greatly

reduces the number of models to explore. The exact figures depend on the topology. The Bool-

ean network model formalism dictates that the state of any internal node is only dependent on

the states of its regulators. Therefore, if node i has ri regulators, its truth table will have 2ri

entries. As a consequence, there are 22ri ways of choosing the truth table of node i. Building the

whole model is equivalent to picking a combination of truth tables for all nodes, so the number

of models in the search space is given in Eq 1.

Yn

i¼1

22ri ¼ 2

Xn

i¼1
2ri

ð1Þ

With the topology from Fornara et al. plus the two extra interactions,
Xn

i¼1
2ri equals 54.

Table 1. Genes expressed in the three classical meristematic identities.

Vegetative TFL1 [4]

Inflorescence (FT), SOC1 [4], AGL24 [4], TFL1 [4,22]

Floral (FT), AP1 [4,22], LFY [22]

https://doi.org/10.1371/journal.pcbi.1005744.t001
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As a consequence, there are 254 models in the search space after excluding models that do

not conform to prior knowledge (down from 2320). Details of the calculation are provided in

Table 2. Furthermore, most of them can be ruled out because they are not compatible with the

observed steady states (see S2 Text). In this case, only 237 solutions presented the required

steady states (Fig 3). As evidenced by the formulae, adding new interactions becomes more

Fig 2. Matrix of gene expressions in cell populations identified from ISH pictures. Rows correspond to cell

populations and columns to chemical species or other variables. A black square means a species is present or a

variable is on in the associated tissue.

https://doi.org/10.1371/journal.pcbi.1005744.g002
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and more expensive. In particular, the latest two interactions added into the data set,

AP1!SOC1 and Auxin!LFY, increased the size of the search space 24-fold and 216-fold,

respectively. This brought the problem close to the limit of what was computationally feasible.

Performing the exhaustive search on this problem takes about 1.5 years with current CPUs,

but was achieved using a 192-core High-Performance-Computing cluster running for 3 days.

The search returned 1.6 billion suitable models. These solutions were used to build an aggre-

gate topology graph of the GRN (Fig 4), using the methods described in S6 Text.

The 1.6 billion models represent networks with mostly similar topologies. Among the 14

interactions allowed in the search space, all appear in at least some models, and 11 appear in

all models. 7 interactions can clearly be labelled as positive or negative, but the other 7 remain

ambiguous. This happens because either an interaction is sometimes positive and negative in

the same model, depending on which other regulators are present, or it is positive in some

models and negative in others.

Fig 5 shows the proportions of models in which each interaction is positive, negative,

ambivalent, and absent. In most models, the interactions controlling LFY are ambivalent,

Table 2. Contributions of each gene to the number of models to explore.

i ri 2ri

SOC1 3 8

AGL24 2 4

LFY 5 32

AP1 3 8

TFL1 1 2

https://doi.org/10.1371/journal.pcbi.1005744.t002

Fig 3. Required steady states for the exhaustive search. Each row corresponds to a desired steady state,

and each column to a gene. Black and white cells respectively indicate whether a gene is expressed or not.

https://doi.org/10.1371/journal.pcbi.1005744.g003
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Fig 4. Aggregate graph of the models generated by exhaustive search on Fornara data set with 2 extra

interactions. The nodes of the graph represent the species of the regulatory network, which are also nodes

of the Boolean network models. Edges represent regulatory interactions between regulators and their targets.

Arrowheads are placed on the side of the target species. V-, T- and O-shaped arrowheads respectively

denote up-regulation, down-regulation, and interactions that can fall in either category, depending on the

context and the model. Edge thicknesses and edge labels indicate the frequency of occurrence of the

associated interactions, across all the models generated. Owing to the very large number of models obtained,

a frequency displayed as 1.000 does not necessarily mean all models.

https://doi.org/10.1371/journal.pcbi.1005744.g004

Exploration of the Boolean-model space of a developmental switch
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meaning that the regulators of LFY can be both activators and repressors, depending on the

combination of other regulators. Such behaviors do not seem very plausible. Instead, it is likely

that these models are simply artefacts resulting from the high number of regulators of LFY and

the comparatively small amount of information about the behavior of LFY: many combina-

tions of LFY regulators are possible, but the actual behavior of LFY is unknown in most of

them.

Fig 5. Distribution of interaction types per interaction across the set of models generated by exhaustive search. Each pie

chart indicates the proportions of models in which the associated interaction is positive (green), negative (red), ambivalent (blue) or

non-existent (white). Thus, FT was never seen to influence LFY, but it did activate or repress AP1 (as shown by the red and green

segments) in ~17% each of the models found.

https://doi.org/10.1371/journal.pcbi.1005744.g005

Exploration of the Boolean-model space of a developmental switch
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A higher resolution description of gene expression during the transition

can be established from in situ hybridization (ISH) data

A survey has been carried out of published ISH studies of AGL24, AP1, LFY, SOC1,TFL1 and

FD, with which FT interacts (see S1 Table). As well as the three classical meristematic identities

(Table 1), this survey has revealed additional identities, most of them matching zones already

characterized in studies of SAM development [23], see Figs 2, 6 and 7. Unless otherwise stated,

all of these identities have variants in both the vegetative and floral phases.

The first identity is the organizing center (OC). It is classically defined as the expression

domain ofWUS, but it also seems to express TFL1 [24,25], another mobile protein that is

transported towards the apex. The second identity is the central zone (CZ), which contains

stem cells and is located at the very apex of the meristem. These cells are unable to initiate the

formation of a primordium in response to auxin [26], possibly because their auxin sensitivity

has been disrupted, as suggested by the expression patterns of some genes of the ARF family

[27]. The third is the peripheral zone (PZ), vegetative or inflorescence, which surrounds the

Fig 6. SAM domains. A Shoot Apical Meristem is a dome-shaped structure whose zonal cell types (identities) have

been depicted in different colors. The Organizing Center (OC), Flank, Peripheral Zone (PZ), Central Zone (CZ) and

internal cells are shown in progressively paler shades of green, while an Anlage and Primordium are shown in two

shades of brown. Cells in the CZ grow, divide and differentiate into the PZ or an Anlage, which respectively go on to

become the flank or a primordium. Each Anlage is generated periodically. In a vegetative meristem, these Anlagen go

on to produce primordia that lack their own OC and grow into leaves. Inflorescence meristems produce Anlagen that

become floral primordia that do contain their own OCs (colored red).

https://doi.org/10.1371/journal.pcbi.1005744.g006

Exploration of the Boolean-model space of a developmental switch
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Fig 7. SAM gene expression domains in time and space. Distribution of gene-expression patterns. Green and black contours

mark the expression domains of the species mentioned in the upper left corners of the boxes. A minus sign before a gene name

means the frame marks a hole in the expression domain of that gene. The green species are those used as triggers of the transitions

between developmental stages. Transitions (symbolized by purple arrows) are triggered by toggling the variables associated with the

green species (i.e. crossing green lines on the diagram), which pushes the system towards a new identity, often causing black

species to also toggle their values (i.e. cross black lines on the diagram). Identities are represented as colored areas for clarity, the

surface of these areas is not representative. The left-hand and the right-hand halves of the picture are temporally separate, all other

separations are spatial.

https://doi.org/10.1371/journal.pcbi.1005744.g007

Exploration of the Boolean-model space of a developmental switch
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CZ. We define its border as that of the diffusion domain of the TFL1 protein [24]. Within the

PZ, some cells actually belong to another (fourth) identity: anlagen, which are founder cells of

lateral organs. Their defining characteristic is a high concentration of auxin. Floral anlagen

start expressing LFY [28]. The fifth identity is the primordia for anlagen that have gone

through the boundary of the TFL1 protein domain, which express AP1 [29,30], but not FD
[29], SOC1 [30] or AGL24 [31]. Finally, the sixth is the meristem flank, which surrounds pri-

mordia. Compared to the peripheral zone, its differences are that it does not have TFL1 pro-

teins [24] and it is insensitive to auxin treatment [32].

In addition to these known steady states, knowledge of the processes involved in plant

development has enabled us to generate a list of initial steady states, perturbations and result-

ing steady states (Table 3). These steady states and transitions were also complemented with

information inferred from the phenotypes of the tfl1 and the ap1mutants (see Table 4). Study-

ing the ap1mutant led us to consider a seventh zone: the floral OC, which does not have any

counterpart in the vegetative SAM. In WT plants, it is very similar to the floral primordium,

except that it is located deeper within the meristem, and we assume it does not have a high

Table 3. Developmental transformations in WT.

Initial steady state Perturbation Final steady state

Vegetative CZ - apex

- auxin

Vegetative PZ

Vegetative PZ - TFL1 protein Vegetative flank

Vegetative PZ + auxin Vegetative anlagen

Vegetative anlagen - TFL1 protein Vegetative primordium

Inflorescence CZ - apex

- auxin

Inflorescence PZ

Inflorescence PZ - TFL1 protein Inflorescence flank

Inflorescence PZ + auxin Floral anlagen

Floral anlagen - TFL1 protein Floral primordium

Floral primordium + inner

- auxin

Floral OC

Vegetative OC + FT Inflorescence OC

Vegetative CZ + FT Inflorescence CZ

Inflorescence CZ with FT - apex

- auxin

Inflorescence PZ with FT

Inflorescence PZ with FT - TFL1 protein Inflorescence flank with FT

Inflorescence PZ with FT + auxin Floral anlage with FT

Floral anlage with FT - TFL1 protein Floral primordium with FT

Floral primordium with FT + inner

- auxin

Floral OC with FT

https://doi.org/10.1371/journal.pcbi.1005744.t003

Table 4. Transitions in mutant plants.

Mutation Initial steady state Perturbation Resulting steady state

tfl1 Vegetative CZ + FT A state with AP1

ap1 Floral anlagen - TFL1 protein Floral primordium in ap1

ap1 Floral primordium in ap1 + inner

- auxin

Inflorescence OC (similar to WT)

ap1 Floral primordium in ap1 + apex

+ TFL1 protein

Inflorescence CZ (similar to WT)

https://doi.org/10.1371/journal.pcbi.1005744.t004

Exploration of the Boolean-model space of a developmental switch

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005744 September 20, 2017 13 / 25

https://doi.org/10.1371/journal.pcbi.1005744.t003
https://doi.org/10.1371/journal.pcbi.1005744.t004
https://doi.org/10.1371/journal.pcbi.1005744


concentration of auxin. In the ap1mutant, this territory is expected to turn into an inflores-

cence OC instead, paving the way for a recursive, cauliflower-like inflorescence architecture.

The additional data provided by ISH was unfortunately shown by exhaustive search to be

incompatible with the supplemented Fornara topology, as some of the observed steady states

(Fig 2) provide conflicting information about the regulation of some genes, implying that the

topology is incomplete. As a consequence, in order to solve this problem, it was crucial to

develop a method that can suggest new regulatory edges for the network. One approach

involves the use of Genetic Programming (GP). There are two motives for developing such an

approach: the need for simpler over complex/implausible regulatory interactions, and a non-

exhaustive strategy of exploration of the search space should be both more cost-effective and

allow the solving of complex cases that involve more species and interactions. This perfor-

mance gain can also be used to explore models that do not perfectly match prior knowledge,

and hence potentially identify previously unknown interactions.

A genetic programming algorithm proposes Boolean models that explain

the meristem development during the transition

465 models fitting the observations were generated using this approach. As these results

included models that shared the same truth table, they could be filtered down to 103 distinct

models (i.e. models with distinct truth tables). These models can be clearly classified according

to their fitness values (Fig 8; lower is better). The presence of clearly separated peaks is due to

the way the fitness function was constructed. Each peak represents a different number of novel

Fig 8. Distribution of the fitness values of the 103 distinct models generated by genetic programming.

The formula for this can be found in S5 Text. Models found by genetic programming spontaneously segregate

into clusters corresponding to their fitness values. Each cluster corresponds to a different number of novel

interactions introduced into the regulation network. The algorithm attempts to find models with the fewest

novel interactions possible, i.e. those with the lowest fitness values. It does however not always succeed in

finding models with the actual lowest possible number of novel interactions, hence the presence of several

clusters on the diagram.

https://doi.org/10.1371/journal.pcbi.1005744.g008
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interactions. The number of copies per distinct model from the first peak (fitness < -0.18) is

plotted in Fig 9. It empirically shows that not all models of approximately equal fitness will be

found with similar frequencies by the algorithm, and this also applies when all the models

were considered (see S2 Fig).

As mentioned previously, the topology provided to the algorithm did not allow, as is, for

any solutions to be found. As a consequence, all solutions proposed by GP involve additional

interactions that were not part of the prior knowledge. An aggregate graph of the topologies of

the 103 models is presented in Fig 10. It reveals numerous potential novel interactions, many

of which occur at low frequencies (< 10%). This is because the set includes sub-optimal mod-

els, as far as the parsimony of new interactions is concerned (i.e. they include models that have

more novel interactions than necessary). This can be addressed by retaining only the models

with lower (i.e. better) fitness values.

In the following, only the best models (fitness values< -0.18) were retained, as they are—by

construction—the models with the fewest novel interactions (4 in total). Some are more parsi-

monious than others in terms of known interactions (see section S2 Table), but we will con-

sider them equally relevant here, as our main focus is the study of minimal sets of novel

interactions able to complement published networks. The aggregate graph of this selection is

presented in Fig 11. The 12 models selected this way suggest:

• FD is repressed by AP1; this would constitute a negative feedback loop, whereby FD activates

floral identity genes before indirectly turning itself off;

• SOC1 is not necessarily repressed directly by AP1; the results of the exhaustive search had

shown that a negative feedback loop was necessary, but it might be the same as that of FD;

Fig 9. Counts of the distinct models generated by the GP algorithm, with fitness < −0.18. Models with

the same number have the same fitness value. The approach favors models with lower fitness values, but

even at a given fitness value (1a-1c, 3a-3d), not all models are found with the same frequency, suggesting

that some may be easier to find than others.

https://doi.org/10.1371/journal.pcbi.1005744.g009
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• AP1 is not necessarily activated directly by FT; an indirect activation pathway through SOC1
and LFY is sufficient;

• TFL1 is upregulated by a non-modelled factor present in the inner tissue of the meristem, or

a modelled factor with unknown interactions occurring in the inner tissue of the meristem;

• The auxin pathway is disrupted by TFL1 and a non-modelled factor present in the CZ, or a

modelled factor with unknown interactions occurring in the CZ of the meristem.

In this subset of solutions, only one interaction (AGL24! LFY) is of undefined nature in

the aggregate of the 12 models. This interaction is however never undefined within any given

model (Fig 12), instead there are some models where it is positive, and some where it is nega-

tive. This shows that this GP approach is able to avoid complex models. The equations of the

Fig 10. Interactions found in the 103 networks generated by genetic programming. Black and red

edges are respectively part of the prior knowledge and novel. Edge labels represent the frequencies of their

respective edges. Many novel interactions appear in at least some of the 103 models, but most of them with

low frequencies. The interactions involving apex and inner however both have frequencies of 1. This confirms

that the variables apex and inner, as they were defined, would be able to explain the patterning of the auxin

signaling pathway and TFL1, respectively, although additional work would be needed to explain how apex and

inner can be defined molecularly. This also shows that no way to substitute apex or inner with other variables

could be found, unless it would involve substantially more novel interactions.

https://doi.org/10.1371/journal.pcbi.1005744.g010
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12 models are given in S2 Table. Among these 12 distinct models, 5 interactions are not pres-

ent in all models:

• TFL1 protein! LFY;

• FD! AP1;

• SOC1! LFY;

• AGL24! LFY;

• AP1! AGL24.

Principal component analysis (PCA) was carried out to determine the number of degrees of

freedom in the set of 12 models. It showed this set was truly 5-dimensional. 91% of variance

can be explained by the first three components (Table 5). The first component only covers

interactions SOC1! LFY and AGL24! LFY, with opposite coefficients, showing the SOC1
and AGL24 nodes can play similar roles in the regulation of LFY in the generated models. The

Fig 11. Interactions found in the 12 networks in the first peak of fitness. The naming and color scheme

are as described for Fig 9. This shows the repressions of FD by AP1 and of the auxin pathway by TFL1 are the

most straightforward additions required to make the network consistent with the data. This also shows that

some interactions are not required to explain the data, namely FT! AP1, FD! AP1 and AP1! SOC1.

https://doi.org/10.1371/journal.pcbi.1005744.g011
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Fig 12. The AGL24! LFY interaction types across the subset of 12 models. The pie chart indicates the

proportion of models in which the associated interaction is positive (green), negative (red), or non-existent

(white).

https://doi.org/10.1371/journal.pcbi.1005744.g012

Table 5. Principal components of the variability in the subset of 12 models.

Principal Component TFL1 protein! LFY FD! AP1 SOC1! LFY AGL24! LFY AP1! AGL24 Percentage of variance explained

#1 -0.000 0.000 0.707 - 0.707 0.000 0.366

#2 -0.357 0.362 0.190 0.190 0.819 0.295

#3 0.622 -0.259 -0.350 -0.350 0.548 0.253

The numbers in the interaction columns are the components of the PCA vector, the more extreme (+/-) the value, the more it is contributing to the

associated component of variance.

https://doi.org/10.1371/journal.pcbi.1005744.t005
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second component is mostly composed of AP1! AGL24, probably because it is not necessary

for a model to fit the observations: the most concise models generated do not include that

interaction at all (see S2 Table).

Looking at combinations of interactions model per model provides additional insight.

Noticeably, LFY is always upregulated by SOC1,AGL24 or both, in each of the proposed solu-

tions (Table 6). It highlights the importance of an activation path from inflorescence genes

(SOC1 and AGL24) to the floral identity gene LFY, and confirms that one such path is theoreti-

cally sufficient. However, if only one of them activates LFY, the algorithm is not able to suggest

which one from the available data.

Interestingly, none of the configurations reported in Table 6 involves all five interactions,

even though they do all feature in the topology reviewed by Fornara et al. However, the miss-

ing interactions can be either of the five. This shows there is not only redundancy between

SOC1 and AGL24, but also at a higher level.

Discussion

In this paper, we have described a succession of approaches aiming to build Boolean models

able to reproduce a set of spatio-temporal gene expression patterns, whilst complying with

prior knowledge on the regulatory topology. Starting from a brute force approach exhaustively

enumerating a list of candidate models, we have been led to more sophisticated developments

based on genetic programming. It seems likely that other systems involving cell differentiation

and tissue patterning would require similar refinements, but it might be, in cases where prior

biological knowledge is detailed enough, that the simplest approach leads to relevant conclu-

sions. Therefore, the results have included all the different steps with some details, as summa-

rized now.

The most naïve search strategy, exhaustive search, can only be carried out on very simple

models, though it can be improved upon by restricting the search space to models conforming

to a predetermined network topology. This drastically simplifies the problem, however, it

might still not be enough if the network topology is too complex. Another issue is that it

requires a sufficiently comprehensive network topology, which might not be available. How-

ever, even if these two problems do not arise, solutions generated this way may not be satisfy-

ing, as they are likely to involve complex, unlikely regulatory mechanisms.

These three problems are addressed by the GP approach used here. Genetic algorithms are

known to be efficient at exploring high-dimensional spaces, such as the space of all Boolean

Table 6. Combinations of interaction types in the best cluster of GP-generated models.

TFL1 protein! LFY FD! AP1 SOC1! LFY AGL24! LFY AP1! AGL24 Counts

-1 0 1 0 0 2

-1 0 0 1 -1 2

-1 0 0 1 0 2

-1 0 1 0 -1 2

0 -1 1 -1 -1 1

-1 0 1 1 0 1

0 0 1 -1 0 1

-1 0 1 1 -1 1

Each row corresponds to the set of interactions (-1, 1 and 0 denoting inhibition, activation and no interaction) with the final column showing the number of

models in which this set was found.

https://doi.org/10.1371/journal.pcbi.1005744.t006
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models involving a set of nodes. Genetic programming has the added benefit of being able to

generate Boolean equations directly, which makes it easier to target models involving simpler,

more plausible regulatory interactions. This approach has successfully been applied to the reg-

ulatory network controlling cell identity in the SAM, resulting on the formulation of several

plausible models and the suggestion of novel regulatory interactions absent from the starting

network topology, but confirmed by independent laboratory work.

A large part of the input data in this work has been extracted from in situ hybridization

experiments. This shows the locations the mRNA of the studied genes, but not their proteins,

which is an issue for mobile proteins, such as FT and TFL1. Although the greatest care was

taken when interpreting ISH pictures, comparing plants of different ages at different times,

and grown in different conditions may be a source of errors. Confocal imaging of multiple

fluorescent fusion proteins could help with both matters, as it provides a way of tracing pro-

teins and studying how they co-localize. Following the development of the same plant through

time is also possible with this technique, but it would take many months to generate such plant

lines.

Lack of mutant data

The core of our approach is based on the use of ISH data. Unfortunately, this kind of data is

usually not available for mutants. This has consequences for the models that can be generated.

Indeed, real biological regulatory networks are usually robust to mutations, as regulators are

often encoded by a family of related genes, providing redundancy. However, our GP approach

generates models as simple as possible, and there are few data about expression profiles in

mutants, so it has no reason to try to represent the robustness of the real network. This means

the algorithm will build models featuring little, if any, redundancy.

Applicability of the method

This method, based on co-expression profiles and genetic programming, has been successfully

applied to the case of the network controlling cell identity in the SAM. Although it has not

been tested on other biological networks, it should be applicable to other networks when

appropriate data sets are available. It would be interesting to see how well the method performs

on other cases, and, in particular, if the trade-off between computation time and quality of the

output models is satisfactory across all cases. It is entirely possible that this trade-off could be

improved using a different set of parameters for the GP algorithm, both as default values and

as problem-specific values. This is because little optimization has been carried out in this area,

due to the high computational cost associated with it.

Role of AP1 and TFL1

This work suggests that AP1 represses FD. While this was not reported by Liu et al. or Fornara

et al., it has since been published [33]. The GP output also suggested AP1 does not necessarily

need to directly down-regulate SOC1, as this would be redundant with an indirect repression

via FD. This might be tested experimentally in an FD-overexpressing plant. If SOC1 is not

down-regulated in floral primordia, it would confirm that the repression of SOC1 by AP1 goes

through FD. Alternatively, it is possible that both regulatory features occur and this is a case of

feed-forward repression.

One of the aims of this work is to investigate the place of TFL1 in the regulation of cell iden-

tity in the SAM. To make this possible, variables inner and apex were introduced for the fol-

lowing reasons. First, very little is known about the regulation of TFL1, which makes it difficult

to produce models where TFL1 is expressed in the right conditions. The patterning of TFL1 is,
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however, very similar to that ofWUS, for which a patterning mechanism combining inhibition

in outer tissues and sensitivity to activation in inner tissues has been proposed [30]. An

“inner” node was added to the network to enable similar models for TFL1. Second, TFL1
seems to affect the identity of CZs. Indeed, floral meristems, which are usually determinate,

instead generate recursive cauliflower-like patterns in the ap1/calmutants, where TFL1 is

expressed ectopically. Conversely, the SAM becomes determinate in tfl1mutants, as the meri-

stem turns into a flower after the transition. Since the apices of the SAM and floral meristems

appear to have similar behaviors in some genetic backgrounds, we postulated that those apices

share some unknown properties responsible for this shared behavior, and introduced a vari-

able called “apex” accordingly.

It is not clear which molecular species correspond to the spatial information implied by var-

iables inner and apex, but some genes exhibit the relevant expression patterns. Inner seems to

correlate with AHK4 [34] and apex to CLV3 [35]. Interestingly, these two genes are involved in

theWUSCHEL-CLAVATA negative feedback loop. AsWUS and TFL1 share similar expression

patterns and their expression levels are correlated, it seems likely that TFL1 and genes of this

loop are somehow connected. Should it not be the case, the patterns of AHK4 and CLV3 still

prove that genes with patterns appropriate to explain those of inner and apex do exist.

Extension to quantitative modelling

Inferring a quantitative model of the network controlling SAM identity—such as an ODE or

PDE model—by genetic programming might be possible. The major challenges, however, are

that it would add a parameter optimization problem for each system of equations to assess,

and the simulations of ODE models are more expensive than those of Boolean models. How-

ever, instead of trying to infer a quantitative model directly, another approach could be to con-

vert the Boolean models into ODE models using predefined methods [36,37]. These

quantitative models could then be simulated in a spatially explicit context, such as a 3D tissue

mesh, which would enable the simulation of transitions in a more explicit way (growth, cell

division, diffusion, transport). The main limitation of such developments is the lack of any

nondestructive experimental method to measure quantitatively the gene expression patterns of

cells in situ in organs, so that the quantitative outputs of differential models would have no

experimental counterpart for comparison.

Materials and methods

Data

Classical 3-identity model. There are traditionally three characterized identities for cells

constituting the SAM: vegetative, inflorescence and floral [4]. Some genes are commonly con-

sidered as characteristic of these profiles (Table 1). The vegetative profile represents any cell of

the vegetative (pre-transition) SAM, as they do not seem to differ in the expression of any of

the considered genes. The inflorescence profile represents cells of the main shoot of the inflo-

rescence meristem (i.e.: primordia are excluded). The floral profile represents cells of the floral

primordia. FT is necessary to induce the shift from vegetative to inflorescence in the OC and

CZ, but once the inflorescence identity of CZ cells is acquired, FT is no longer required (mem-

ory effect).

Developmental transformations. The development of the SAM is assumed to take place

through the occurrence of perturbations making the system transition from one steady state to

another (Table 3).

Mutant phenotypes. In tfl1mutants, a terminal flower develops at the apex of the meri-

stem. Another interesting case is the ap1/cal double mutant. CAL is a close homolog of AP1.
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When both are knocked out, the inflorescence develops into a cauliflower shape, where meri-

stem primordia turn into inflorescence meristems and recursively generate new primordia.

This information is summarized in Table 4.

Genetic programming

Three criteria come into play in the fitness function, listed below in order of priority.

1. nviolated: sum of the XOR distances between the required end steady states and the end

steady states reached by the model, for the species deemed relevant (lower is better, always

0 for solutions to the problem); For each (I, P, F, C, M) transition (see S3 Text), attractor(P

(I)) is calculated. If the latter is a steady state, the distance between attractor(P(I)) and F is

the number of non-zero values in (P(I) XOR F) AND C. Otherwise, if attractor(P(I)) is a

cycle, the model is rejected and the distance is set to the number of non-zero values in C;

2. ninteractions: number of novel (i.e. not present in the data, see details below) interactions in

the model (lower is better). For efficiency reasons, this is based on the equations of the

model rather than its truth table. A novel interaction ij is considered included in a model if

and only if i appears in the equation of j and interaction ij is not in the prior knowledge.

3. nterms: number of terms in the equations (including operators, lower is better). It is given by

the number of nodes in the tree of the model. In order to optimize the fitness function,

genetic programming algorithms produce successive generations of offspring.

The formula of the fitness function is presented in Eq 2.

nviolated �
1

1þ ninteractions �
1

1þ nterms
ð2Þ

This function does not allow any kind of trade-off: criteria with lower ranks always have

priority over those with higher ranks.

As genetic algorithms can potentially get stuck in local minima of fitness functions, the

scheme devised here mitigates this issue by running the algorithm multiple times and intro-

ducing transition data both progressively and in a different order each time. Each run follows

the following process:

1. Establish a dataset D of known transitions;

2. Create an empty dataset D’;

3. Pick a transition in D randomly, and move it into D’;

4. Run the genetic programming algorithm until a solution that does not violate any transition

in D’ is found or the algorithm times out (i.e. no solutions could be found in a preset num-

ber of generations after the latest transition was added). Repeat from step 3 until D is empty

and a solution compatible with D’ is found (unless a time-out occurs);

5. If such a solution is found, keep running the genetic programming algorithm for a fixed

number of iterations to come up with a simplified form. Save the best individual as a

solution.

Running this algorithm multiple times generates different solutions.
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Supporting information

S1 Fig. Aggregate graph of the models generated by exhaustive search on the topology

reported by Fornara and colleagues. Nodes are genes. Edges represent regulatory interac-

tions. Edge labels and edge thicknesses denote the occurrence frequencies of the associated

interactions. V-, T- and O-shaped arrowheads indicate positive, negative and ambiguous inter-

actions, respectively.

(TIF)

S2 Fig. Counts of all distinct models generated by the GP algorithm. Models with the same

number have the same fitness value.

(PNG)

S1 Table. List of the genes and time points extracted from in situ hybridization images,

and their sources. Dates are expressed as days after germination (dag), days after induction

(dai) or as developmental stages when no other information was available (vegetative, transi-

tion or inflorescence).

(PDF)

S2 Table. Equations and graphs of the twelve best models from the genetic programming

search.
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