6 research outputs found

    EP43A-3553 Comparing riparian forest processes on large rivers to inform floodplain management and restoration

    No full text
    Session: Advances in the Science and Communication of Biophysical Interactions in Riverine Landscapes IIInternational audienc

    Long-term river management legacies strongly alter riparian forest attributes and constrain restoration strategies along a large, multi-use river

    No full text
    International audienceMany terrestrial ecosystems have undergone profound transformation under the pressure of multiple human stressors. This may have oriented altered ecosystems toward transient or new states. Understanding how these cumulative impacts influence ecosystem functions, services and ecological trajectories is therefore essential to defining effective restoration strategies. This is particularly the case in riverine ecosystems, where the profound alteration of natural disturbance regimes can make the effectiveness of restoration operations questionable. Using the case study of legacy dike fields, i.e., area delimited by longitudinal and lateral dikes, along the regulated Rhone River, we studied the impacts of long-term channelization and flow regulation on environmental conditions and riparian forests attributes along a 200 km climatic gradient. We characterized the imprint of human stressors on these forests by comparing the dike field stands to more natural stands in both young and mature vegetation stages. Across four reaches of the river between Lyon and the Mediterranean Sea, we found that channelization consistently promoted high rate of overbank sedimentation and rapid disconnection of dike field surfaces from the channel. The rapid terrestrialisation of dike field surfaces, i.e., the process by which former aquatic areas transition to a terrestrial ecosystem as a result of dewatering or sedimentation, fostered a pulse of riparian forest regeneration in these resource-rich environments that differs from more natural sites in structure and composition. Within the dike fields, older pre-dam stands are dominated by post-pioneer and exotic species, and post-dam stands support large, aging pioneer trees with a largely exotic understory regeneration layer. These patterns were associated with differences in the relative surface elevation among dike fields, whereas species shifts generally followed the river's longitudinal climate gradient. To enhance the functionality of these human-made ecosystems, restoration strategies should target the reconnection of dike fields to the river by dismantling part of the dikes to promote lateral erosion, forest initiation and community succession, as well as increasing minimum flows in channels to improve connection with groundwater. However, since a river-wide return to a pre-disturbance state is very unlikely, a pragmatic approach should be favoured, focusing on local actions that can improve abiotic and biotic function, and ultimately enhancing ecosystem services such biodiversity, habitat, and recreation opportunities

    New systematically measured sand mining budget for the Mekong Delta reveals rising trends and significant volume underestimations

    No full text
    The river beds of the Mekong Delta are some of the most intensively sand mined places in the world. However, sand mining budgets remain limited to rough and indirect estimates. Here, we provide a first systematic, field-based estimation of the Mekong Delta's sand mining budget. This budget overcomes the limitations of relying on officially declared statistics and bathymetric surveys of short channel reaches. We applied Sentinel-1 radar imagery to monitor the distribution of sand mining activities using boat metrics-driven mining intensity maps correlated with a field-based bathymetry difference map which were derived from two extensive bathymetric surveys conducted in 2014 and 2017. The two surveys cover ∼ 100 km in the Tiền River, reaching approximately 15% of the Mekong Delta. We then extrapolated the Tiền River findings to the broader Vietnamese Mekong Delta from 2015 to 2020 and measured a continuous increase of the extraction budget by ∼ 25% between 2015 (38 Mm3/yr) and 2020 (47 Mm3/yr). We estimated a total sand mining budget of 254 Mm3 during the 6-year study period with an average annual rate of ∼ 42 Mm3. Our field-based annual rates are higher than both official declarations provided and estimates from previous studies which implies that a substantial portion of the sand mining budget remains unaccounted for. Riverbed sand mining remains a key threat to the Mekong Delta as it contributes to a multitude of other environmental threats including dam construction effects on sedimentation, ongoing subsidence, sea level rise and recurring saltwater intrusion. This study offers a new approach that can be implemented elsewhere to allow for systematic monitoring and quantification of sand mining activities that are vital for assessing future projections on environmental impacts.Ministry of Education (MOE)Nanyang Technological UniversityNational Research Foundation (NRF)Published versionThis study is funded by Nanyang Technological University (#SUG-NAP 3/19EP) and Ministry of Education of Singapore (#Tier1 RT06/19, #Tier1 2021-T1-001-056 and #Tier2 MOE-T2EP402A20-0001). This research was supported by the Earth Observatory of Singapore via its funding from the National Research Foundation Singapore and the Singapore Ministry of Education under the Research Centres of Excellence initiative

    Socio-environmental implications of process-based restoration strategies in large rivers: should we remove novel ecosystems along the Rhône (France)?

    No full text
    International audienceRiver restoration efforts require interdisciplinary approaches involving fluvial geomorphology, hydraulic engineering, ecology, sedimentology, chemistry, social geography, and sociology. We investigated the functioning of artificial structures called “Casiers Girardon” (groyne fields) in the Rhône River. We assessed potential benefits and risks linked to removing the Rhône groyne fields in a restoration context, with particular focus on the potential for increased bank erosion. Hydraulic, morphological, chemical, ecological, and social issues resulting from dismantlement were studied for terrestrialized and aquatic Casiers Girardon. Only 10% of Casiers Girardon have maintained their aquatic features, whereas most of the Casiers are terrestrialized. Our results help to confirm the effectiveness of restoration actions; however, they also indicate uncertainties and additional knowledge needs, especially in regard to potential incompatibilities between Casier restoration and conservation. Then, an interdisciplinary conceptual model was developed to identify interventions to be considered in Casiers Girardon, according to their terrestrialization rate and physiochemical characteristics (connectivity, amount of gravel vs. fine sediment, contamination level). This model synthetizes scientific results and expert judgment and provides management recommendations based on ecological and sociological expectations about the restoration of Casiers Girardon. The model highlights high heterogeneity in functioning and ecological potential between terrestrialized and aquatic Casiers. Dismantling of terrestrialized Casiers has strong potential to provide multiple benefits, whereas aquatic Casiers could be maintained as valuable backwaters. The managing guidelines for the Casiers Girardon of the Rhône River should be adapted according to local conditions, as well as expected benefits and needs, and conducted in co-ordination with all actors involved in and affected by the restoration
    corecore