11 research outputs found

    Atomic layer fluorination of 5 V class positive electrode material LiCoPO4 for enhanced electrochemical performance

    Get PDF
    EJK would like to thank the Alistore ERI for the award of a studentship. The authors thank EPSRC Capital for Great Technologies Grant EP/L017008/1. The authors want to thank the French Research Network on the Electrochemical Energy Storage (RS2E) for YCB’s PhD grant. MD and NL are indebted to the IR-RMN-THC FR3050 CNRS for the spectrometer time access and the financial support of the NMR experiments.The surface fluorination of lithium cobalt phosphate (LiCoPO4, LCP) using a one‐step, room temperature processable, easily up‐scalable and dry surface modification method with XeF2 as fluorine source was developed. After fluorination, fluorine‐rich nanoparticles were observed mainly on the particle surface, which facilitates the improvement of surface stability and electrochemical performance such as cycling stability and rate capability, as the fluorinated LCP can be protected against side reactions with electrolyte or by‐products of electrolyte decomposition at high voltage (5 V). More importantly, the direct surface fluorination proved more efficient than adding a fluorinated electrolyte additive (i. e., FEC). These results suggest that surface fluorination using XeF2 is of great promise for practical applications of high voltage positive materials for lithium‐ion batteries.PostprintPeer reviewe

    Surface fluorination for active electrode protection technology

    No full text
    Un changement de cap vers les technologies vertes est impulsĂ© par les instances dirigeantes EuropĂ©ennes, dĂ©sormais d’importants efforts sont engagĂ©s pour rĂ©duire notre empreinte carbone d’au moins 40% d’ici Ă  2030. Le dĂ©veloppement de batteries sĂ»res, prĂ©sentant de meilleures densitĂ©s d’énergie s’inscrit dans cette dĂ©marche. Ces technologies sont incontournables pour la croissance du secteur des transports Ă©lectriques et des rĂ©seaux Ă©lectriques intelligents. Pour rĂ©pondre Ă  la demande, de nouveaux matĂ©riaux doivent ĂȘtre dĂ©veloppĂ©s et les matĂ©riaux existants doivent ĂȘtre amĂ©liorĂ©s pour atteindre de meilleures capacitĂ©s de stockage et de plus hauts potentiels de travail. La recherche prospecte de nouveaux matĂ©riaux d’électrodes, de nouveaux Ă©lectrolytes, mais aussi de nouvelles stratĂ©gies pour protĂ©ger les interfaces Ă©lectrodes/Ă©lectrolyte au cƓur des batteries. En effet, dans les batteries secondaires, les interfaces Ă©lectrodes/Ă©lectrolyte jouent un rĂŽle dĂ©terminant dans les performances Ă©lectrochimiques et les durĂ©es de vie. Les Ă©lectrolytes liquides organiques subissent des dĂ©gradations dans les fenĂȘtres de potentiels appliquĂ©s conduisant Ă  la formation d’une couche Ă  la surface des Ă©lectrodes nĂ©gatives appelĂ©e « Solid Electrolyte Interphase » (SEI). La formation de cette interface amĂšne une problĂ©matique Ă  double tranchant : la SEI diminue l’efficacitĂ© coulombique et provoque des pertes de capacitĂ© irrĂ©versibles, mais elle permet Ă©galement la passivation de l’électrode et prĂ©vient les mĂ©canismes de vieillissements. Sachant cela, toute modification de la SEI se rĂ©vĂšle dĂ©licate puisque l’équilibre entre les aspects positifs et nĂ©gatifs peut ĂȘtre perdu. Par la chimisorption d’une fine couche fluorĂ©e Ă  la surface des matĂ©riaux d’anode, nous sommes parvenus Ă  amĂ©liorer le pouvoir passivant de la SEI Ă  la surface de matĂ©riaux TiO2 et Li4Ti5O12 (LTO), conduisant Ă  l’amĂ©lioration des comportements Ă©lectrochimiques. Nous avons dĂ©terminĂ© que de faibles quantitĂ©s de fluor Ă  la surface des matĂ©riaux actifs peuvent suffire Ă  apporter de nombreuses amĂ©liorations. De plus, nous avons dĂ©montrĂ© que la fluoration est Ă©galement bĂ©nĂ©fique pour les matĂ©riaux d’électrodes positives tels que LiNi0.8Co0.15Al0.05O2 (NCA). En effet, le matĂ©riau NCA souffre d’instabilitĂ©s structurales en surface qui entrainent des dĂ©gradations des capacitĂ©s. Des comportements Ă©lectrochimiques amĂ©liorĂ©s ont Ă©tĂ© observĂ©s pour des Ă©lectrodes NCA fluorĂ©es, la fluoration permettant une stabilisation de la structure de surface du NCA.Nous avons prospectĂ© l’influence de la fluoration de surface des matĂ©riaux actifs aux interfaces avec l’électrolyte, au moyen d’une approche multiĂ©chelle. La nature chimique de la couche fluorĂ©e en surface des matĂ©riaux d’électrodes positives et nĂ©gatives a Ă©tĂ© dĂ©crite par XPS, tout comme la distribution spatiale 2D du fluor par les techniques AES et SAM. Les propriĂ©tĂ©s du cƓur et de la sous-surface des LTO-F ont Ă©tĂ© caractĂ©risĂ©es par le couplage de la DRX, du Raman et de la RMN 19F du solide, aucune modification structurelle induite par la fluoration n’a Ă©tĂ© observĂ©e. L’influence de la fluoration de surface sur les performances Ă©lectrochimiques a Ă©tĂ© Ă©valuĂ©e par le couplage de cyclages galvanostatiques et d’analyses XPS et AES effectuĂ©es sur des Ă©lectrodes ayant cyclĂ©es. Les LTO-F montrent une nouvelle rĂ©activitĂ© vis-Ă -vis de l’électrolyte, conduisant Ă  la formation d’une SEI plus fine et plus stable. Enfin, la gĂ©nĂ©ration des gaz par les Ă©lectrodes LTO fluorĂ©s a Ă©tĂ© caractĂ©risĂ©e par la GC-MS. Nous avons dĂ©montrĂ© que la formation de CO2 est rĂ©duite par la fluoration de surface. Dans l’ensemble, la stratĂ©gie dĂ©ployĂ©e dans cette Ă©tude, allant de la synthĂšse Ă  une caractĂ©risation multiĂ©chelle rigoureuse, propose de nouvelles solutions pour amĂ©liorer Ă  la fois la stabilitĂ© de la SEI en surface d’électrodes nĂ©gatives et la stabilitĂ© structurale de surface de matĂ©riaux d’électrodes positives, pour des batteries Li-ion de plus haute performance.A shift toward greener technologies has been impulsed by the European authorities and tremendous efforts are now engaged to drastically reduce our carbon footprint, by at least for 40 percent by 2030. The development of safe batteries with higher energy density is part of this shift, since this technology is critical for the commercialization and for the rise of electrical mobility and smart energy grid deployment. To do so, new materials need to be developed or existing materials need to be improved to reach higher specific capacities and working electrochemical potentials. The research prospects new electrode materials, new electrolytes and new ways to protect the electrode/electrolyte interphase within the batteries. Indeed, in secondary batteries, the anode/electrolyte interphase plays a key role in the electrochemical performances and life span. Since the classically used liquid organic electrolytes are not stable in the totality of the working potential window of Li-ion batteries, they undergo degradation on cycling of the battery, hence a Solid Electrolyte Interphase (SEI) is formed. This interphase passivates the negative electrodes from the electrolyte and prevents further aging processes, however as this passivation continues in cycling, it also lowers the coulombic efficiency and causes irreversible capacity loss. Knowing this, any modification of the SEI should be performed with parsimony as it could break the balance between the positive and negative aspect for the SEI. By synthetizing a chemisorbed thin fluorinated layer upon anode material, we managed to improve the passivating power of the SEI on TiO2 and Li4Ti5O12 (LTO) anodes, leading to enhanced electrochemical performance. We also determine that very low quantities of fluorine on the active electrode material surface leads to several beneficial effects. We demonstrated that the fluorination brings as well enhancement for positive electrode materials, such as LiNi0.8Co0.15Al0.05O2 (NCA). Indeed, NCA and NMC suffer structural surface instability, leading to self-heating and loss of performance. Improved cyclability is observed for fluorinated NCA electrodes as the fluorination stabilizes the surface structure.Surface fluorination was carried by a process using XeF2, for the first time applied to electrode materials. We aimed to prospect the influence of the surface fluorination on different aspect of a Li-ion battery, from the active material to the electrolyte interphase, thanks to a multi-scale probing approach. The chemical nature of the surface layer on negative and positive electrode materials was described by the mean of the XPS, as well as the fluorine distribution on the surface with both AES and SAM. The bulk and sub-surface properties of fluorinated LTO (LTO-F) were also investigated by coupling XRD, Raman Spectroscopy and NMR 19F, showing no modifications of the crystallographic structure. The influence of the surface fluorination on the electrochemical performance was investigated by galvanostatic cycling and by coupling XPS and SAM on cycled electrodes. We paid a specific attention to the impact of the fluorination on the SEI thickness and stability in charge and discharge. Indeed, LTO-F exhibits a new reactivity toward the electrolyte, leading to a thinner and stabilized SEI. Finally, the gas generation of the LTO-F electrodes has been investigated by Gas Chromatography – Mass Spectrometry (GC-MS), as gassing is known to be a roadblock to the commercialization of LTO. We demonstrated that the CO2 outgassing is reduced by the surface fluorination. Overall, the strategy implemented in this work, from synthesis to thorough characterization, offer new solutions to improve both SEI formed on negative electrode material as well as surface structural stability of positive electrode material, leading to improved Li-ion batteries

    Technologie de protection active des Ă©lectrodes par fluoration de surface

    No full text
    A shift toward greener technologies has been impulsed by the European authorities and tremendous efforts are now engaged to drastically reduce our carbon footprint, by at least for 40 percent by 2030. The development of safe batteries with higher energy density is part of this shift, since this technology is critical for the commercialization and for the rise of electrical mobility and smart energy grid deployment. To do so, new materials need to be developed or existing materials need to be improved to reach higher specific capacities and working electrochemical potentials. The research prospects new electrode materials, new electrolytes and new ways to protect the electrode/electrolyte interphase within the batteries. Indeed, in secondary batteries, the anode/electrolyte interphase plays a key role in the electrochemical performances and life span. Since the classically used liquid organic electrolytes are not stable in the totality of the working potential window of Li-ion batteries, they undergo degradation on cycling of the battery, hence a Solid Electrolyte Interphase (SEI) is formed. This interphase passivates the negative electrodes from the electrolyte and prevents further aging processes, however as this passivation continues in cycling, it also lowers the coulombic efficiency and causes irreversible capacity loss. Knowing this, any modification of the SEI should be performed with parsimony as it could break the balance between the positive and negative aspect for the SEI. By synthetizing a chemisorbed thin fluorinated layer upon anode material, we managed to improve the passivating power of the SEI on TiO2 and Li4Ti5O12 (LTO) anodes, leading to enhanced electrochemical performance. We also determine that very low quantities of fluorine on the active electrode material surface leads to several beneficial effects. We demonstrated that the fluorination brings as well enhancement for positive electrode materials, such as LiNi0.8Co0.15Al0.05O2 (NCA). Indeed, NCA and NMC suffer structural surface instability, leading to self-heating and loss of performance. Improved cyclability is observed for fluorinated NCA electrodes as the fluorination stabilizes the surface structure.Surface fluorination was carried by a process using XeF2, for the first time applied to electrode materials. We aimed to prospect the influence of the surface fluorination on different aspect of a Li-ion battery, from the active material to the electrolyte interphase, thanks to a multi-scale probing approach. The chemical nature of the surface layer on negative and positive electrode materials was described by the mean of the XPS, as well as the fluorine distribution on the surface with both AES and SAM. The bulk and sub-surface properties of fluorinated LTO (LTO-F) were also investigated by coupling XRD, Raman Spectroscopy and NMR 19F, showing no modifications of the crystallographic structure. The influence of the surface fluorination on the electrochemical performance was investigated by galvanostatic cycling and by coupling XPS and SAM on cycled electrodes. We paid a specific attention to the impact of the fluorination on the SEI thickness and stability in charge and discharge. Indeed, LTO-F exhibits a new reactivity toward the electrolyte, leading to a thinner and stabilized SEI. Finally, the gas generation of the LTO-F electrodes has been investigated by Gas Chromatography – Mass Spectrometry (GC-MS), as gassing is known to be a roadblock to the commercialization of LTO. We demonstrated that the CO2 outgassing is reduced by the surface fluorination. Overall, the strategy implemented in this work, from synthesis to thorough characterization, offer new solutions to improve both SEI formed on negative electrode material as well as surface structural stability of positive electrode material, leading to improved Li-ion batteries.Un changement de cap vers les technologies vertes est impulsĂ© par les instances dirigeantes EuropĂ©ennes, dĂ©sormais d’importants efforts sont engagĂ©s pour rĂ©duire notre empreinte carbone d’au moins 40% d’ici Ă  2030. Le dĂ©veloppement de batteries sĂ»res, prĂ©sentant de meilleures densitĂ©s d’énergie s’inscrit dans cette dĂ©marche. Ces technologies sont incontournables pour la croissance du secteur des transports Ă©lectriques et des rĂ©seaux Ă©lectriques intelligents. Pour rĂ©pondre Ă  la demande, de nouveaux matĂ©riaux doivent ĂȘtre dĂ©veloppĂ©s et les matĂ©riaux existants doivent ĂȘtre amĂ©liorĂ©s pour atteindre de meilleures capacitĂ©s de stockage et de plus hauts potentiels de travail. La recherche prospecte de nouveaux matĂ©riaux d’électrodes, de nouveaux Ă©lectrolytes, mais aussi de nouvelles stratĂ©gies pour protĂ©ger les interfaces Ă©lectrodes/Ă©lectrolyte au cƓur des batteries. En effet, dans les batteries secondaires, les interfaces Ă©lectrodes/Ă©lectrolyte jouent un rĂŽle dĂ©terminant dans les performances Ă©lectrochimiques et les durĂ©es de vie. Les Ă©lectrolytes liquides organiques subissent des dĂ©gradations dans les fenĂȘtres de potentiels appliquĂ©s conduisant Ă  la formation d’une couche Ă  la surface des Ă©lectrodes nĂ©gatives appelĂ©e « Solid Electrolyte Interphase » (SEI). La formation de cette interface amĂšne une problĂ©matique Ă  double tranchant : la SEI diminue l’efficacitĂ© coulombique et provoque des pertes de capacitĂ© irrĂ©versibles, mais elle permet Ă©galement la passivation de l’électrode et prĂ©vient les mĂ©canismes de vieillissements. Sachant cela, toute modification de la SEI se rĂ©vĂšle dĂ©licate puisque l’équilibre entre les aspects positifs et nĂ©gatifs peut ĂȘtre perdu. Par la chimisorption d’une fine couche fluorĂ©e Ă  la surface des matĂ©riaux d’anode, nous sommes parvenus Ă  amĂ©liorer le pouvoir passivant de la SEI Ă  la surface de matĂ©riaux TiO2 et Li4Ti5O12 (LTO), conduisant Ă  l’amĂ©lioration des comportements Ă©lectrochimiques. Nous avons dĂ©terminĂ© que de faibles quantitĂ©s de fluor Ă  la surface des matĂ©riaux actifs peuvent suffire Ă  apporter de nombreuses amĂ©liorations. De plus, nous avons dĂ©montrĂ© que la fluoration est Ă©galement bĂ©nĂ©fique pour les matĂ©riaux d’électrodes positives tels que LiNi0.8Co0.15Al0.05O2 (NCA). En effet, le matĂ©riau NCA souffre d’instabilitĂ©s structurales en surface qui entrainent des dĂ©gradations des capacitĂ©s. Des comportements Ă©lectrochimiques amĂ©liorĂ©s ont Ă©tĂ© observĂ©s pour des Ă©lectrodes NCA fluorĂ©es, la fluoration permettant une stabilisation de la structure de surface du NCA.Nous avons prospectĂ© l’influence de la fluoration de surface des matĂ©riaux actifs aux interfaces avec l’électrolyte, au moyen d’une approche multiĂ©chelle. La nature chimique de la couche fluorĂ©e en surface des matĂ©riaux d’électrodes positives et nĂ©gatives a Ă©tĂ© dĂ©crite par XPS, tout comme la distribution spatiale 2D du fluor par les techniques AES et SAM. Les propriĂ©tĂ©s du cƓur et de la sous-surface des LTO-F ont Ă©tĂ© caractĂ©risĂ©es par le couplage de la DRX, du Raman et de la RMN 19F du solide, aucune modification structurelle induite par la fluoration n’a Ă©tĂ© observĂ©e. L’influence de la fluoration de surface sur les performances Ă©lectrochimiques a Ă©tĂ© Ă©valuĂ©e par le couplage de cyclages galvanostatiques et d’analyses XPS et AES effectuĂ©es sur des Ă©lectrodes ayant cyclĂ©es. Les LTO-F montrent une nouvelle rĂ©activitĂ© vis-Ă -vis de l’électrolyte, conduisant Ă  la formation d’une SEI plus fine et plus stable. Enfin, la gĂ©nĂ©ration des gaz par les Ă©lectrodes LTO fluorĂ©s a Ă©tĂ© caractĂ©risĂ©e par la GC-MS. Nous avons dĂ©montrĂ© que la formation de CO2 est rĂ©duite par la fluoration de surface. Dans l’ensemble, la stratĂ©gie dĂ©ployĂ©e dans cette Ă©tude, allant de la synthĂšse Ă  une caractĂ©risation multiĂ©chelle rigoureuse, propose de nouvelles solutions pour amĂ©liorer Ă  la fois la stabilitĂ© de la SEI en surface d’électrodes nĂ©gatives et la stabilitĂ© structurale de surface de matĂ©riaux d’électrodes positives, pour des batteries Li-ion de plus haute performance

    Surface Layer Fluorination of TiO 2 Electrodes for Electrode Protection LiBs: Fading the Reactivity of the Negative Electrode/Electrolyte Interface

    No full text
    International audienceWe demonstrate the possibility to master the negative electrode/electrolyte interface reactivity of a TiO2 based electrode with a protecting fluorinated layer, synthesized by a safe process applied for a first time on electrode materials. Pure XeF2 has been used as fluorinating agent with two different fluorination rates (LowF and HighF). This prospective study provides new insights of the surface fluorination benefits thanks to extreme surface spectroscopy analysis. Indeed, enhanced electrochemical performances have been correlated with the surface reactivity of fluorinated electrodes by the means of the Scanning Auger Mapping analysis (SAM) and to the X-ray Photoemission Spectroscopy (XPS). As shown by the XPS results, fluorinated electrodes exhibit thinner and stabilized solid electrolyte interphase (SEI) layer, providing more effective passivating properties. The SAM chemical mappings confirm this trend. The fluorination of the active material leads to fade the reactivity toward the electrolyte, consequently the products of the electrolyte degradation are deposited in lower quantities on the fluorinated electrode surface, especially the species originated from the salt degradation. Both of the fluorinated electrodes exhibit improved specific capacity by 10% after ten cycles. The polarization is reduced by 12.4% and 17% for LowF and HighF electrodes, respectively

    Surface reactivity of Li2MnO3: first-principles and experimental study

    No full text
    The present paper deals with the surface reactivity of (001) oriented Li2MnO3 crystals investigated from a multi-techniques approach combining, material synthesis, X-ray photoemission spectroscopy (XPS), Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES) and first-principle calculations. Li2MnO3 is considered as a model compound suitable to go further in the understanding of the role of tetravalent manganese atoms in the surface reactivity of layered lithium oxides. The knowledge of the surface properties of such materials is essential in order to understand the mechanisms involved in parasitic phenomena responsible for early aging or poor storage performances of lithium-ion batteries. The surface reactivity was probed through the adsorption of SO2 gas molecules on large Li2MnO3 crystals in order to be able to focus the XPS beam on the top of the (001) surface. A chemical mapping and XPS characterization of the material before and after the SO2 adsorption show in particular that the adsorption is homogeneous at the micro and nanoscale and involves Mn reduction, while first-principle calculations on a slab model of the surface allow us to conclude that the most energetically favorable species formed is a sulfate with charge transfer implying reduction of Mn.Laboratory of excellency for electrochemical energy storag

    Atomic layer fluorination of 5 V class positive electrode material LiCoPO<sub>4</sub> for enhanced electrochemical performance

    No full text
    The surface fluorination of lithium cobalt phosphate (LiCoPO4, LCP) using a one‐step, room temperature processable, easily up‐scalable and dry surface modification method with XeF2 as fluorine source was developed. After fluorination, fluorine‐rich nanoparticles were observed mainly on the particle surface, which facilitates the improvement of surface stability and electrochemical performance such as cycling stability and rate capability, as the fluorinated LCP can be protected against side reactions with electrolyte or by‐products of electrolyte decomposition at high voltage (5 V). More importantly, the direct surface fluorination proved more efficient than adding a fluorinated electrolyte additive (i. e., FEC). These results suggest that surface fluorination using XeF2 is of great promise for practical applications of high voltage positive materials for lithium‐ion batteries
    corecore