3,553 research outputs found
Recommended from our members
The energy penalty of post-combustion CO2 capture & storage and its implications for retrofitting the U.S. installed base
A review of the literature has found a factor of 4 spread in the estimated values of the energy penalty for post-combustion capture and storage of CO2 from pulverized-coal (PC) fired power plants. We elucidate the cause of that spread by deriving an analytic relationship for the energy penalty from thermodynamic principles and by identifying which variables are most difficult to constrain. We define the energy penalty for CCS to be the fraction of fuel that must be dedicated to CCS for a fixed quantity of work output. That penalty can manifest itself as either the additional fuel required to maintain a power plant's output or the loss of output for a constant fuel input. Of the 17 parameters that constitute the energy penalty, only the fraction of available waste heat that is recovered for use and the 2nd-law separation efficiency are poorly constrained. We provide an absolute lower bound for the energy penalty of ~11%, and we demonstrate to what degree increasing the fraction of available-waste-heat recovery can reduce the energy penalty from the higher values reported. It is further argued that an energy penalty of ~40% will be easily achieved while one of ~29% represents a decent target value. Furthermore, we analyze the distribution of PC plants in the U.S. and calculate a distribution for the additional fuel required to operate all these plants with CO2 capture and storage (CCS).Earth and Planetary SciencesEngineering and Applied Science
Electron electric dipole moment experiment using electric-field quantized slow cesium atoms
A proof-of-principle electron electric dipole moment (e-EDM) experiment using
slow cesium atoms, nulled magnetic fields, and electric field quantization has
been performed. With the ambient magnetic fields seen by the atoms reduced to
less than 200 pT, an electric field of 6 MV/m lifts the degeneracy between
states of unequal mF and, along with the low (approximately 3 m/s) velocity,
suppresses the systematic effect from the motional magnetic field. The low
velocity and small residual magnetic field have made it possible to induce
transitions between states and to perform state preparation, analysis, and
detection in regions free of applied static magnetic and electric fields. This
experiment demonstrates techniques that may be used to improve the e-EDM limit
by two orders of magnitude, but it is not in itself a sensitive e-EDM search,
mostly due to limitations of the laser system.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.
A differential pressure instrument with wireless telemetry for in-situ measurement of fluid flow across sediment-water boundaries
© 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution (3.0) License. The definitive version was published in Sensors 9 (2009): 404-429, doi:10.3390/s90100404.An instrument has been built to carry out continuous in-situ measurement of small differences in water pressure, conductivity and temperature, in natural surface water and groundwater systems. A low-cost data telemetry system provides data on shore in real time if desired. The immediate purpose of measurements by this device is to continuously infer fluxes of water across the sediment-water interface in a complex estuarine system; however, direct application to assessment of sediment-water fluxes in rivers, lakes, and other systems is also possible. Key objectives of the design include both low cost, and accuracy of the order of ±0.5 mm H2O in measured head difference between the instrument’s two pressure ports. These objectives have been met, although a revision to the design of one component was found to be necessary. Deployments of up to nine months, and wireless range in excess of 300 m have been demonstrated
Mars oxygen production system design
The design and construction phase is summarized of the Mars oxygen demonstration project. The basic hardware required to produce oxygen from simulated Mars atmosphere was assembled and tested. Some design problems still remain with the sample collection and storage system. In addition, design and development of computer compatible data acquisition and control instrumentation is ongoing
Impact of deforestation on solid and dissolved organic matter characteristics of tropical peat forests: implications for carbon release
This study compares the organic chemistry of peat beneath one of last remaining pristine tropical peat forests in Southeast Asia with a neighbouring peat dome that has been deforested, but not intentionally drained, in the Belait district of Brunei Darussalam, Borneo. We characterized the solid and dissolved organic matter collected from the two domes, through a combination of methods including elemental analysis, phenolic content and Fourier transform infrared spectroscopy (FTIR) investigation of solid peat, as well as optical characterisation (absorbance, fluorescence) of dissolved organic matter (DOM). The peat had a high content of lignin, consistent with its origin from the Shorea albida trees on the domes. Dissolved organic carbon (DOC) concentration in the pore water was significantly greater in the deforested site (79.9 ± 5.5 mg l[superscript −1]) than the pristine site (62.2 ± 2.2 mg l[superscript −1]). The dissolved organic matter was richer in nitrogen and phenolics in the deforested site. The optical properties (Fluorescence Index) indicated a modification of DOM cycling in the deforested site (enhanced decomposition of the peat and fresh litter). Comparison of the solid peat composition between the two sites also suggests effects of deforestation: sulphur, nitrogen and phenolic contents were higher in the deforested site. Taken together, these observations are consistent with peat enhanced decomposition in the deforested site, even without engineered drainage.Singapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and Modelin
Envelope Structure of Starless Core L694-2 Derived from a Near-Infrared Extinction Map
We present a near-infrared extinction study of the dark globule L694-2, a
starless core that shows strong evidence for inward motions in molecular line
profiles. The J,H, and K band data were taken using the European Southern
Observatory New Technology Telescope. The best fit simple spherical power law
model has index p=2.6 +/- 0.2, over the 0.036--0.1 pc range in radius sampled
in extinction. This power law slope is steeper than the value of p=2 for a
singular isothermal sphere, the initial condition of the inside-out model for
protostellar collapse. Including an additional extinction component along the
line of sight further steepens the inferred profile. Fitting a Bonnor-Ebert
sphere results in a super-critical value of the dimensionless radius xi_max=25
+/- 3. The unstable configuration of material may be related to the observed
inward motions. The Bonnor-Ebert model matches the shape of the observed
profile, but significantly underestimates the amount of extinction (by a factor
of ~4). This discrepancy in normalization has also been found for the nearby
protostellar core B335 (Harvey et al. 2001). A cylindrical density model with
scale height H=0.0164+/- 0.002 pc viewed at a small inclination to the cylinder
axis provides an equally good radial profile as a power law model, and
reproduces the asymmetry of the core remarkably well. In addition, this model
provides a basis for understanding the discrepancy in the normalization of the
Bonnor-Ebert model, namely that L694-2 has prolate structure, with the full
extent (mass) of the core being missed by assuming symmetry between the
profiles in the plane of the sky and along the line-of-sight. If the core is
sufficiently magnetized then fragmentation may be avoided, and later evolution
might produce a protostar similar to B335.Comment: 38 pages, 7 figures, accepted to Astrophysical Journa
- …