97 research outputs found

    Field Identification of the Mice Peromyscus leucopus noveboracensis and P. maniculatus gracilis in Central New York

    Get PDF
    Field identification of the White-footed Mouse (Peromyscus leucopus noveboracensis) and Long-tailed Deer Mouse (Peromyscus maniculatus gracilis) is difficult because of their similar external morphology. Peromyscus were sampled by live-trapping during a five-year period (1992-1996) at the Arnot Teaching and Research Forest, Van Etten, New York and identified to species by electrophoresis of their salivary amylase. No electromorphs were shared between P. leucopus and P. maniculatus, thus permitting unambiguous species identification of individuals. Means and ranges of four external measurements (ear, head-body, hind-foot, and tail) and tail to head-body ratio were determined for amylase-genotyped live mice. Although some body measurements did differ on average between the two species (ear, head-body, and tail for adults; hind-foot and tail for juveniles), the ranges of these overlap considerably. When the four external measurements (excluding the tail to head-body ratio) were used to construct two discriminant-function equations, they yielded correct identification of 80% of the adult P. l. noveboracensis and P. m. gracilis assessed excluding juveniles, and 71% of adult and juvenile mice combined. The function reported here allows partial field identification, but genetic analysis remains the only reliable field method for differentiation between live P. l. noveboracensis and P. m. gracilis.Β Includes erratum for a figure in this article

    An Analysis of the Dynamics of Mammalian Mitochondrial DNA Sequence Evolution'

    Get PDF
    The dynamics of the substitution process for mammalian mitochondrial DNA have been modeled. The temporal behavior of several quantities has been studied and the model's predictions have been compared with estimates obtained from recent mtDNA sequence data for an increasingly divergent series of primates, the mouse and the cow (Anderson et al. 1981, Bibb et al. 1981. The results are consistent with the hypothesis that the decrease in the proportion of transitions observed as divergence increases is a consequence of the highly biased substitution process. In addition, the results support the hypothesis that, although a portion of the mtDNA molecule evolves at an extremely rapid rate, a significant portion of the molecule is under strong selective constraints

    Locus-Specific Decoupling of Base Composition Evolution at Synonymous Sites and Introns along the Drosophila melanogaster and Drosophila sechellia Lineages

    Get PDF
    Selection is thought to be partially responsible for patterns of molecular evolution at synonymous sites within numerous Drosophila species. Recently, β€œper-site” and likelihood methods have been developed to detect loci for which positive selection is a major component of synonymous site evolution. An underlying assumption of these methods, however, is a homogeneous mutation process. To address this potential shortcoming, we perform a complementary analysis making gene-by-gene comparisons of paired synonymous site and intron substitution rates toward and away from the nucleotides G and C because preferred codons are G or C ending in Drosophila. This comparison may reduce both the false-positive rate (due to broadscale heterogeneity in mutation) and false-negative rate (due to lack of power comparing small numbers of sites) of the per-site and likelihood methods. We detect loci with patterns of evolution suggestive of synonymous site selection pressures predominately favoring unpreferred and preferred codons along the Drosophila melanogaster and Drosophila sechellia lineages, respectively. Intron selection pressures do not appear sufficient to explain all these results as the magnitude of the difference in synonymous and intron evolution is dependent on recombination environment and chromosomal location in a direction supporting the hypothesis of selectively driven synonymous fixations. This comparison identifies 101 loci with an apparent switch in codon preference between D. melanogaster and D. sechellia, a pattern previously only observed at the Notch locus

    Incompatibilities Involving Yeast Mismatch Repair Genes: A Role for Genetic Modifiers and Implications for Disease Penetrance and Variation in Genomic Mutation Rates

    Get PDF
    Genetic background effects underlie the penetrance of most genetically determined phenotypes, including human diseases. To explore how such effects can modify a mutant phenotype in a genetically tractable system, we examined an incompatibility involving the MLH1 and PMS1 mismatch repair genes using a large population sample of geographically and ecologically diverse Saccharomyces cerevisiae strains. The mismatch repair incompatibility segregates into naturally occurring yeast strains, with no strain bearing the deleterious combination. In assays measuring the mutator phenotype conferred by different combinations of MLH1 and PMS1 from these strains, we observed a mutator phenotype only in combinations predicted to be incompatible. Surprisingly, intragenic modifiers could be mapped that specifically altered the strength of the incompatibility over a 20-fold range. Together, these observations provide a powerful model in which to understand the basis of disease penetrance and how such genetic variation, created through mating, could result in new mutations that could be the raw material of adaptive evolution in yeast populations

    Coevolution of Interacting Fertilization Proteins

    Get PDF
    Reproductive proteins are among the fastest evolving in the proteome, often due to the consequences of positive selection, and their rapid evolution is frequently attributed to a coevolutionary process between interacting female and male proteins. Such a process could leave characteristic signatures at coevolving genes. One signature of coevolution, predicted by sexual selection theory, is an association of alleles between the two genes. Another predicted signature is a correlation of evolutionary rates during divergence due to compensatory evolution. We studied female–male coevolution in the abalone by resequencing sperm lysin and its interacting egg coat protein, VERL, in populations of two species. As predicted, we found intergenic linkage disequilibrium between lysin and VERL, despite our demonstration that they are not physically linked. This finding supports a central prediction of sexual selection using actual genotypes, that of an association between a male trait and its female preference locus. We also created a novel likelihood method to show that lysin and VERL have experienced correlated rates of evolution. These two signatures of coevolution can provide statistical rigor to hypotheses of coevolution and could be exploited for identifying coevolving proteins a priori. We also present polymorphism-based evidence for positive selection and implicate recent selective events at the specific structural regions of lysin and VERL responsible for their species-specific interaction. Finally, we observed deep subdivision between VERL alleles in one species, which matches a theoretical prediction of sexual conflict. Thus, abalone fertilization proteins illustrate how coevolution can lead to reproductive barriers and potentially drive speciation

    Evolutionary Rate Covariation Identifies New Members of a Protein Network Required for Drosophila melanogaster Female Post-Mating Responses

    Get PDF
    Seminal fluid proteins transferred from males to females during copulation are required for full fertility and can exert dramatic effects on female physiology and behavior. In Drosophila melanogaster, the seminal protein sex peptide (SP) affects mated females by increasing egg production and decreasing receptivity to courtship. These behavioral changes persist for several days because SP binds to sperm that are stored in the female. SP is then gradually released, allowing it to interact with its female-expressed receptor. The binding of SP to sperm requires five additional seminal proteins, which act together in a network. Hundreds of uncharacterized male and female proteins have been identified in this species, but individually screening each protein for network function would present a logistical challenge. To prioritize the screening of these proteins for involvement in the SP network, we used a comparative genomic method to identify candidate proteins whose evolutionary rates across the Drosophila phylogeny co-vary with those of the SP network proteins. Subsequent functional testing of 18 co-varying candidates by RNA interference identified three male seminal proteins and three female reproductive tract proteins that are each required for the long-term persistence of SP responses in females. Molecular genetic analysis showed the three new male proteins are required for the transfer of other network proteins to females and for SP to become bound to sperm that are stored in mated females. The three female proteins, in contrast, act downstream of SP binding and sperm storage. These findings expand the number of seminal proteins required for SP's actions in the female and show that multiple female proteins are necessary for the SP response. Furthermore, our functional analyses demonstrate that evolutionary rate covariation is a valuable predictive tool for identifying candidate members of interacting protein networks. Β© 2014 Findlay et al

    A Nutrient-Driven tRNA Modification Alters Translational Fidelity and Genome-wide Protein Coding across an Animal Genus

    Get PDF
    <div><p>Natural selection favors efficient expression of encoded proteins, but the causes, mechanisms, and fitness consequences of evolved coding changes remain an area of aggressive inquiry. We report a large-scale reversal in the relative translational accuracy of codons across 12 fly species in the <i>Drosophila</i>/<i>Sophophora</i> genus. Because the reversal involves pairs of codons that are read by the same genomically encoded tRNAs, we hypothesize, and show by direct measurement, that a tRNA anticodon modification from guanosine to queuosine has coevolved with these genomic changes. Queuosine modification is present in most organisms but its function remains unclear. Modification levels vary across developmental stages in <i>D. melanogaster</i>, and, consistent with a causal effect, genes maximally expressed at each stage display selection for codons that are most accurate given stage-specific queuosine modification levels. In a kinetic model, the known increased affinity of queuosine-modified tRNA for ribosomes increases the accuracy of cognate codons while reducing the accuracy of near-cognate codons. Levels of queuosine modification in <i>D. melanogaster</i> reflect bioavailability of the precursor queuine, which eukaryotes scavenge from the tRNAs of bacteria and absorb in the gut. These results reveal a strikingly direct mechanism by which recoding of entire genomes results from changes in utilization of a nutrient.</p></div

    Wolbachia infection at least partially rescues the fertility and ovary defects of several new Drosophila melanogaster bag of marbles protein-coding mutants.

    No full text
    The D. melanogaster protein coding gene bag of marbles (bam) plays a key role in early male and female reproduction by forming complexes with partner proteins to promote differentiation in gametogenesis. Like another germline gene, Sex lethal, bam genetically interacts with the endosymbiont Wolbachia, as Wolbachia rescues the reduced fertility of a bam hypomorphic mutant. Here, we explored the specificity of the bam-Wolbachia interaction by generating 22 new bam mutants, with ten mutants displaying fertility defects. Nine of these mutants trend towards rescue by the wMel Wolbachia variant, with eight statistically significant at the fertility and/or cytological level. In some cases, fertility was increased a striking 20-fold. There is no specificity between the rescue and the known binding regions of bam, suggesting wMel does not interact with one singular bam partner to rescue the reproductive phenotype. We further tested if wMel interacts with bam in a non-specific way, by increasing bam transcript levels or acting upstream in germline stem cells. A fertility assessment of a bam RNAi knockdown mutant reveals that wMel rescue is specific to functionally mutant bam alleles and we find no obvious evidence of wMel interaction with germline stem cells in bam mutants

    Multiple Signatures of Positive Selection Downstream of Notch on the X Chromosome in Drosophila melanogaster

    No full text
    To identify genomic regions affected by the rapid fixation of beneficial mutations (selective sweeps), we performed a scan of microsatellite variability across the Notch locus region of Drosophila melanogaster. Nine microsatellites spanning 60 kb of the X chromosome were surveyed for variation in one African and three non-African populations of this species. The microsatellites identified an ∼14-kb window for which we observed relatively low levels of variability and/or a skew in the frequency spectrum toward rare alleles, patterns predicted at regions linked to a selective sweep. DNA sequence polymorphism data were subsequently collected within this 14-kb region for three of the D. melanogaster populations. The sequence data strongly support the initial microsatellite findings; in the non-African populations there is evidence of a recent selective sweep downstream of the Notch locus near or within the open reading frames CG18508 and Fcp3C. In addition, we observe a significant McDonald-Kreitman test result suggesting too many amino acid fixations species wide, presumably due to positive selection, at the unannotated open reading frame CG18508. Thus, we observe within this small genomic region evidence for both recent (skew toward rare alleles in non-African populations) and recurring (amino acid evolution at CG18508) episodes of positive selection
    • …
    corecore