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Abstract

Seminal fluid proteins transferred from males to females during copulation are required for full fertility and can exert
dramatic effects on female physiology and behavior. In Drosophila melanogaster, the seminal protein sex peptide (SP) affects
mated females by increasing egg production and decreasing receptivity to courtship. These behavioral changes persist for
several days because SP binds to sperm that are stored in the female. SP is then gradually released, allowing it to interact
with its female-expressed receptor. The binding of SP to sperm requires five additional seminal proteins, which act together
in a network. Hundreds of uncharacterized male and female proteins have been identified in this species, but individually
screening each protein for network function would present a logistical challenge. To prioritize the screening of these
proteins for involvement in the SP network, we used a comparative genomic method to identify candidate proteins whose
evolutionary rates across the Drosophila phylogeny co-vary with those of the SP network proteins. Subsequent functional
testing of 18 co-varying candidates by RNA interference identified three male seminal proteins and three female
reproductive tract proteins that are each required for the long-term persistence of SP responses in females. Molecular
genetic analysis showed the three new male proteins are required for the transfer of other network proteins to females and
for SP to become bound to sperm that are stored in mated females. The three female proteins, in contrast, act downstream
of SP binding and sperm storage. These findings expand the number of seminal proteins required for SP’s actions in the
female and show that multiple female proteins are necessary for the SP response. Furthermore, our functional analyses
demonstrate that evolutionary rate covariation is a valuable predictive tool for identifying candidate members of interacting
protein networks.

Citation: Findlay GD, Sitnik JL, Wang W, Aquadro CF, Clark NL, et al. (2014) Evolutionary Rate Covariation Identifies New Members of a Protein Network Required
for Drosophila melanogaster Female Post-Mating Responses. PLoS Genet 10(1): e1004108. doi:10.1371/journal.pgen.1004108

Editor: Jianzhi Zhang, University of Michigan, United States of America

Received April 26, 2013; Accepted November 27, 2013; Published January 16, 2014

Copyright: � 2014 Findlay et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by NIH grants to MFW (R01HD038921) and CFA (R01GM64313), NIH National Research Service Awards to GDF
(F32GM097789) and NLC (F32GM084592), and a Cornell Center for Comparative and Population Genomics fellowship to GDF. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mfw5@cornell.edu

¤ Current address: Department of Biology, College of the Holy Cross, Worcester, Massachusetts, United States of America.

Introduction

Sexual reproduction is a fundamental biological process by

which many eukaryotic organisms transmit their genetic material

to the next generation. While the end result of a successful mating

is the fusion of the gametes, other molecular interactions must

occur to allow this fusion. In internally fertilizing animals, males

transfer to females not only sperm, but also a suite of seminal fluid

proteins (Sfps) that are essential for reproductive success. Across

diverse taxa, Sfps are required for: the mobilization of sperm and

their storage within the female; increasing the reproductive

capacity of the female; affecting the outcome of sperm competition

between multiple males; and, facilitating the union of the gametes

[reviewed in 1]. In insects, Sfps also alter female behaviors and

physiology [2]. Effects of Sfps can be caused by interactions

between specific Sfps, between Sfps and proteins on the sperm,

and between Sfps and proteins native to the female reproductive

tract. Thus, characterizing the functions and interactions of Sfps is

important for understanding how the sexes together ensure the

successful production of progeny.

Post-mating changes in physiology and behavior induced by

Sfps have been extensively characterized in Drosophila melanogaster

[2,3]. In response to the receipt of Sfps, females produce, ovulate

and lay eggs [4–6]; store sperm in specialized storage organs [7–

10]; show altered immune responses [11,12]; undergo changes in

sleeping, feeding and excretion behavior [13–16]; and, become

refractory to male courtship [17,18]. Several of these behavioral

changes – egg production, sperm storage and release, and

refractoriness to remating – persist in females for several days

after mating and have thus been termed the long-term response

[19–21]. The proximate cause of these changes is a short (36

amino acid) seminal protein called sex peptide (SP) [17,18]. While

most Sfps are no longer detectable in females several hours after

mating [22], SP persists in females for days by binding to stored

sperm [19]. Gradually, the C-terminal portion of the peptide is

proteolytically cleaved to release it from sperm into the female
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reproductive tract [19]. This C-terminal portion of SP can then

signal through its receptor, sex peptide receptor (SPR), which

prolongs at least some behavioral changes in the female [23–26].

Indeed, SP cleavage is required for the protein to affect female

behavior for more than one day [19] and for sperm to be released

efficiently from storage [27].

We have previously used RNA interference (RNAi) or gene

knockout lines to test 32 Sfps for function in the SP-mediated long-

term response [4,7,10,20,28,29]. These studies identified five

proteins that are required for SP to function over the long term in

mated females: two C-type lectins, CG1652 and CG1656; a serine

protease homolog, CG9997; a cysteine-rich secretory protein,

CG17575; and, a serine protease, seminase (CG10586). These

proteins act in a network in which each member is required for SP

to become bound to sperm [21,28]. Loss of any network protein

causes an early resumption of female receptivity to remating and a

decrease in long-term fecundity. Such loss also impairs the release

of sperm from the seminal receptacle in the days following mating

[27]. Specific members of the network act interdependently on one

another. For example, males that do not produce CG9997 are

unable to transfer CG1652 and CG1656 to the female, while

CG1652 and CG1656 are required to slow the rate at which

CG9997 is processed in the female. Thus, while SP-SPR signaling

is the proximate cause of the female post-mating response, several

additional Sfps are required for this signaling to persist over the

long term. We refer to this set of seven proteins as the SP network.

While genomic and proteomic analyses in D. melanogaster have

identified hundreds of proteins from sperm [30,31], seminal fluid

[32–35], and the female sperm storage organs [36–40], we know

of few examples of how these proteins interact to cause the

dramatic post-mating phenotypes observed in females [21,26,28].

Biochemical approaches to identify interacting proteins are

challenging due to the small amount of protein per fly, and

exhaustive genetic screening of each known reproductive protein

would be laborious. Here, we demonstrate a successful effort to

prioritize male and female proteins for functional testing by

examining covariation in their rates of evolution among species.

Evolutionary Rate Covariation (ERC) is a new metric that

bioinformatically infers functional relationships between proteins

based solely on their evolutionary rates across an array of species

[41]. ERC operates from the hypothesis that functionally related

proteins will experience correlated rate changes, because forces

governing protein evolutionary rate are expected to influence

entire pathways simultaneously. Evolutionary rate depends on

several factors including a protein’s expression level, its essentiality,

and its interactions with other proteins [42–49]. Pathway-wide

fluctuation in each of these factors has been associated with

correlated rate changes (i.e., ERC) between functionally related

proteins [41,50–53].

In practice, an ERC value is calculated by computing the

correlation between the rates of change of two proteins across all

branches of a phylogeny. ERC values range from 1 to 21 for a

perfect positive or negative correlation, respectively, with the

genome-wide ERC distribution between all protein pairs centered

at zero [41]. Functionally related pairs of proteins have been

observed to have more positive ERC values in taxa as diverse as

eubacteria, fungi, invertebrates and mammals [41,50,51,54–58].

This finding holds for proteins that share physical or genetic

interactions and proteins that are found in common complexes or

metabolic pathways [41,59]. Generally, a high ERC value is best

interpreted as a potential functional link, which could have

resulted from a common evolutionary force acting on both

proteins. Accordingly, we can infer that proteins with correlated

rates may be functionally related.

ERC and related methods have primarily been used to study

proteins that are already known to interact functionally or

physically; the use of such methods for functional prediction is

only now starting to emerge [60]. We tested the utility of applying

ERC prospectively by examining proteins required for Drosophila

SP function. Because proper function of the SP network is essential

for fertility, we reasoned that members of this network could have

experienced shared evolutionary selective pressures over time and

might thus show patterns of ERC across the phylogeny of

sequenced Drosophila species [61]. To test this hypothesis, we

created an ERC dataset specific to Drosophila. This analysis

revealed significant levels of ERC between known members of the

SP network. We then screened for new members of this network

by searching for elevated ERC between known network proteins

and sets of uncharacterized Sfps and female reproductive proteins.

RNAi tests of 18 top candidates revealed three female and three

male proteins required for network function. Through molecular

genetic analysis, we placed five of these proteins into specific

positions in the SP network, and we observed that the steps in the

network in which these new proteins act are largely consistent with

their evolutionary correlations. Our results demonstrate that

signatures of ERC can be used prospectively to predict members

of a protein network, suggesting that this method may be broadly

applicable for identifying novel protein interactions.

Results

Proteins in the SP network show correlated evolutionary
rate variation

We first calculated Evolutionary Rate Covariation (ERC) values

for all pairs of orthologous proteins (reproductive and otherwise)

from 12 Drosophila species. Briefly, we assembled orthologous

protein sequences for each gene from each species for which they

were available, resulting in 11,100 multiple alignments. For each

pair of alignments, we calculated the correlation coefficient

between their branch-specific evolutionary rates (see Methods

and Figure S1). The resulting ERC values ranged from 21 to 1

Author Summary

Reproduction requires more than a sperm and an egg. In
animals with internal fertilization, other proteins in the
seminal fluid and the female are essential for full fertility.
Although hundreds of such reproductive proteins are
known, our ability to understand how they interact
remains limited. In this study, we investigated whether
shared patterns of protein sequence evolution were
predictive of functional interactions by focusing on a
small network of proteins that control fertility and female
post-mating behavior in the fruit fly, Drosophila melano-
gaster. We first showed that the six proteins already known
to act in this network display correlated patterns of
evolution across the Drosophila phylogeny. We then
screened hundreds of otherwise uncharacterized male
and female reproductive proteins and identified those with
patterns of evolution most similar to those of the known
network proteins. We tested each of these candidate
genes and found six new network members that are each
required for long-term fertility. Using molecular genetics,
we also observed that the steps in the network at which
these new proteins act are consistent with their strongest
evolutionary correlations. Our results suggest that patterns
of coevolution may be broadly useful for predicting
protein interactions in a variety of biological processes.
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and reflect the degree to which evolutionary rates correlate for any

particular pair of proteins. Typically, ERC values between func-

tionally related protein pairs are elevated compared to unrelated

pairs [55]. We observed this same pattern for the seven previously

known members of the Drosophila SP network. ERC values

calculated for all possible pairs of these seven proteins had a

mean of 0.3115, compared to the proteome-wide mean of 0.0019

(Figure S1A). The highly significant elevation between SP network

proteins (permutation p = 0.000154) suggests that ERC could be

used to predict additional SP network proteins. However, since

proteins that are expressed at similar levels or in similar patterns

can also show correlated evolution [43], we also tested whether

reproductive proteins as a class had elevated ERC values. To do

so, we examined a set of 664 proteins found in seminal fluid,

sperm, or female sperm storage organs (see Methods and Figure

S1A; we refer to these proteins below as ‘‘reproductive’’ but note

that some are also expressed in non-reproductive tissues and could

thus have other functions). The mean ERC value between all

reproductive proteins was 0.0326, a highly significant elevation for

sets of this size (permutation p,0.0001). This elevation could be

driven by direct functional relationships and/or more indirect

relationships such as expression patterns [41].

To control for this elevation in ERC across all reproductive

proteins when evaluating correlations between individual pairs of

proteins, we factored out the broad relationship between them. To

do so, we recalculated ERC using only the 664 reproductive

proteins to estimate the background rate of evolution, instead of all

11,100 proteins (see Methods and Figure S1B). After this

adjustment, the mean pairwise ERC between all proteins in the

reproductive set fell to 0.0047. By contrast, the mean correlation

between the seven known SP network proteins remained

significantly elevated (mean = 0.2806; permutation p = 0.001002).

These results suggest that while shared patterns of expression or

function can cause a significant increase in ERC, a much stronger

signal is shared by the specific set of proteins that act together in

the SP network.

Several of the strongest pairwise correlations between known

members of the SP network were found between proteins with

recognized genetic interactions. For example, males that do not

produce network protein CG9997 are unable to transfer CG1652

and CG1656 to females during mating [21]. These pairs of

proteins show ERC values in the top 5 percent of all pairwise

correlations (CG9997-CG1652: r = 0.62, empirical p = 0.03;

CG9997-CG1656: r = 0.62, empirical p = 0.03; Figure 1). In other

instances, we did not observe strong correlations between proteins

that might be expected to coevolve, such as SP and SPR.

However, this particular lack of correlation may be explained by

the fact that SPR has additional, non-reproductive ligands besides

SP [62,63], which may constrain its evolution. Nonetheless, the

overall signature of correlated evolution throughout the SP

network, the high proportion of positive pairwise correlations in

the group (i.e., 16 of the 21 pairwise correlations in Table 1 are

positive), and the significant correlations between specific group

members suggest that members of the SP network show significant

levels of evolutionary rate covariation.

ERC reveals new candidate SP network proteins
Since we detected positive evolutionary correlations between

known SP network proteins, we applied the ERC method

prospectively to identify new candidate network members. For

this analysis, we calculated pairwise correlations using the

reproductive protein data set described above, and we focused

specifically on correlations between the known SP network

proteins and the 434 proteins that comprised the sets of secreted

Sfps and proteins present in the female reproductive tract. To

identify candidates, we queried each of five network proteins

(CG1652, CG1656, CG9997, CG17575 and SP) against the 434

Sfp and female proteins. SPR was not used as a query because it

has additional ligands that do not appear to function in

reproduction [62,63]. Thus, SPR may need to maintain interac-

tions with multiple proteins, which may dampen signals of

correlated evolution with any single interacting partner. Seminase

was excluded because unambiguous orthologs were found in only

five species, which would cause low statistical power.

We found 111 proteins (55 Sfps, 56 female proteins) that showed

a significant correlation (p,0.05) with at least one of the five

network proteins. From this group, we selected 21 candidates for

further testing, each of which showed a significant (p,0.05) level of

ERC with multiple SP network proteins and/or a highly

significant (p,0.01) level of ERC with at least one network

protein (Table 1). We tested each candidate in Table 1 by using

RNAi to knockdown expression of the gene in the appropriate sex;

five of the 21 candidates showed no evidence of knockdown by

RT-PCR and were excluded from further analysis. For the

remaining 16 candidates, we screened for genes whose knockdown

caused a significant increase in female remating receptivity four

days after an initial mating.

Of the 16 candidates that were at least partially knocked down

by RNAi, five showed highly significant effects on 4-day remating

receptivity (Table 1). Knockdown of the remaining 11 candidates

caused no significant increase in female receptivity. This latter

result could be due in some cases to insufficient knockdown or to

functional redundancy with other Sfps or female proteins.

Alternatively, these proteins may not function in the SP network.

Of the positive candidates, three genes (CG14061, CG30488 and

CG12558) are expressed specifically in the male accessory glands

[64]; at least two of them (CG14061 and CG30488) encode proteins

that are transferred to females as Sfps at mating [33]. The other

two positive candidates, CG3239 and CG5630, are each expressed

in the female’s spermathecae, as well as in other non-reproductive

locations [64]. CG5630 is also expressed in the female’s seminal

receptacle [39].

ERC signatures, but not genomic location, predicts an
additional SP network protein

One striking feature of several of the new candidate network

genes was their genomic positioning next to previously known SP

network genes (Table S2). This pattern was previously observed

for the SP network lectins, CG1652 and CG1656, which are

believed to have arisen from an ancient gene duplication event

[33,34]. We found that three additional pairs of network genes

(CG9997 and CG14061, CG17575 and CG30488, and CG3239 and

SPR) are also located in tandem with one another. For two of these

pairs, the tandemly-located genes encode proteins in the same

biochemical category (CG9997 and CG14061 each encode

predicted serine protease homologs, and CG17575 and CG30488

each encode predicted CRISPs), but in contrast to the situation

with the lectins CG1652 and CG1656, we do not find unambiguous

evidence that either the protease or the CRISP cluster arose by

tandem gene duplication. However, regardless of each cluster’s

origin, it is possible that such genomic clustering enables the co-

regulation of genes that function in a common pathway [65].

In the CG17575/CG30488 cluster, we found a third annotated

gene that encodes a seminal fluid protein of the same predicted

functional class as the other cluster members: CG30486, which

encodes a predicted CRISP. Similarly, we observed a known Sfp

gene encoding a predicted serine protease homolog, CG34295,

immediately upstream of CG12558. While neither CG30486 nor

Coevolving Drosophila Reproductive Proteins
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CG34295 was identified by our ERC analysis, we hypothesized

that their shared locations with known or candidate SP network

members could indicate their involvement in the SP network.

However, when each of these additional genes was knocked down

individually, we observed no effect on female remating receptivity

4 days after mating (Table 2). Thus, either these neighboring genes

are uninvolved in the SP network, or they function in the network

in a completely redundant role. Alternatively, their degrees of

knockdown may have been insufficient to produce a phenotype.

We also asked whether signatures of ERC between these new

candidates and the rest of the large sets of seminal fluid or female

proteins might identify additional network proteins (Figure S1C).

To this end, we used RNAi to test two additional female genes that

showed highly significant ERC levels with at least one new

candidate protein (Table 2). One of these genes, epidermal stripes and

patches (Esp), showed a highly significant effect on female remating

receptivity. Taken together with the results above, these data

suggest that ERC has strong sensitivity to detect new candidate

members of the SP network.

Additional RNAi lines confirm the SP network
phenotypes

To confirm that the receptivity and fertility effects we observed

in the above RNAi experiments were not due to RNAi off-target

effects and/or insertions of RNAi-triggering constructs into

essential genes, we first used UP-TORR [66] to analyze each

line’s RNAi-triggering sequence against all current D. melanogaster

gene annotations. No off-target transcripts were predicted for any

RNAi construct used. We then performed receptivity and long-

term fertility assays (see Methods and below) on additional RNAi

lines, where available, that controlled for either the site of the

UAS-RNAi construct insertion (for CG5630 and Esp) or both the

insertion site and the hairpin sequence used to trigger RNAi (for

CG30488 and CG3239). (No additional RNAi lines exist for

CG14061 or CG12558). These tests (summarized in Table S3)

confirmed the receptivity and fertility phenotypes seen with the

first lines tested for CG30488 and Esp. Likewise, knockdown of

CG5630 by a second hairpin showed a strong effect on fertility and

a marginally significant effect on receptivity. Knockdown of

CG3239 by a second hairpin also replicated a strong effect on

fertility, but showed no significant effect on receptivity. However,

RT-PCR revealed that with this hairpin, CG3239 transcript levels

were only partially knocked down, which could explain the less

severe phenotype. Because of the high degree of replication, results

reported below come from experiments performed on the original

lines (details of which are described in Table S1).

ERC-identified candidates show additional receptivity
and fertility phenotypes consistent with SP network
function

To evaluate whether each of these six genes was required only

for extended female non-receptivity, we next tested each positive

candidate for effects on remating receptivity at 1 day after an

initial mating. As shown in Table 3, in no case did knockdown of a

candidate gene cause an increase in short-term receptivity. Thus,

rather than having general effects on female post-mating behavior,

each candidate is required specifically for the long-term loss of

female receptivity to remating. This phenotype is consistent with a

malfunction in the SP network [20,21]. In females mated to SP

network knockdown males, SP transferred at mating but not

bound to sperm is sufficient for full fertility and non-receptivity 1

day after mating. However, if SP cannot bind to sperm, it is no

longer detected in the reproductive tract by 4 days after mating

[19].

We reasoned that if these six positive candidates affect the

function of the SP network, they should also affect long-term

fertility, which requires the long-term storage and utilization of SP

[17,18,20,26,28]. Consistent with a role in the SP network, each

new protein was required for full fertility over the course of a 10-

day assay (Figure 2). Males knocked down for CG14061, CG30488

Figure 1. Proteins in the SP network show a significantly elevated signature of ERC. This pairwise matrix shows ERC values (above
diagonal) and their corresponding empirical p-values (below diagonal) between the seven known members of the SP network. Red shading indicates
correlations with empirical p,0.05; more intense shading indicates a stronger correlation.
doi:10.1371/journal.pgen.1004108.g001
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Table 1. Candidates identified by ERC and tested for effects on 4-day remating receptivity.

Gene Name Predicted functional class Expression pattern* Significant ERC results
Amount of
knockdown

4-Day Receptivity
Assay

CG30433 C-type lectin male AG CG17575: p = 0.025
CG1652: p = 0.037
SP: p = 0.042

near-complete KD: 7/33
cont: 3/30
p = 0.31

CG11037 chymotrypsin-like male AG CG9997: p = 0.015
CG1652: p = 0.029

partial KD: 1/30
cont: 0/29
p = 1.00

CG11977 CRISP male AG CG9997: p = 0.011
CG1652: p = 0.049

near-complete KD: 2/36
cont: 3/39
p = 1.00

CG14034 lipase male AG CG1652: p = 0.029
CG9997: p = 0.043

near-complete KD: 9/30
cont: 8/45
p = 0.27

CG14061
(aqrs)

serine protease homolog male AG CG1652: p = 0.0015
CG9997: p = 0.02
CG1656: p = 0.035

near-complete KD: 27/29
cont: 0/29
p,0.0001

CG2975 galactosyltransferase male AG, crop CG17575: p = 0.003
SP: p = 0.03

complete KD: 0/34
cont: 5/28
p = 0.015

CG30488
(antr)

CRISP male AG CG9997: p = 0.009 complete KD: 29/32
cont: 3/29
p,0.0001

CG42326 unknown male AG, head, eye CG9997: p = 0.015
CG1652: p = 0.033

near-complete KD: 2/33
cont: 3/31
p = 0.67

CG12558
(intr)

serine protease homolog male AG CG9997: p = 0.007 near-complete KD: 11/14
cont: 3/16
p = 0.0027

CG42564 CRISP male AG CG9997: p = 0.003 near-complete KD: 4/32
cont: 2/33
p = 0.43

CG8420 unknown male AG CG1652: p = 0.007 partial KD: 1/33
cont: 2/33
p = 1.00

CG13077 cytochrome b561 female ST, eye, head CG1656: p = 0.009 near-complete KD: 3/33
cont: 9/33
p = 0.11

CG16713 Kunitz protease inhibitor female ST, FB, hindgut,
head, eye

CG1652: p = 0.009
CG17575: p = 0.022
CG9997: p = 0.042

none detected n/a

CG3097 peptidase M14 female ST, hindgut, crop CG9997: p = 0.0007
CG1652: p = 0.011

complete KD: 1/36
cont: 2/39
p = 1.00

CG3239
(frma)

protease/neprilysin female ST, FB, head,
heart

CG17575: p = 0.008 partial KD: 21/30
cont: 1/30
p,0.0001

CG4302 UDP-glucosyltransferase female ST, MT, FB, eye,
TG, head, brain

CG1656: p = 0.002
CG9997: p = 0.021

none detected n/a

CG6910 inositol oxygenase female ST, heart, FB CG1656: p = 0.007
CG17575: p = 0.047

partial KD: 1/30
cont: 4/31
p = 0.35

CG8586 chymotrypsin-like female ST, head, FB,
eye, crop, heart

CG1656: p = 0.008
SP: p = 0.022
CG17575: p = 0.042

none detected n/a

Mtp phosphatidylcholine transpoter female ST, FB, head, heart,
eye, brain, TG, crop

CG1652: p = 0.041
CG9997: p = 0.048

none detected n/a

vkg extracellular matrix component female ST, FB, heart, TG,
brain, head

CG17575: p = 0.007 none detected n/a

CG5630
(hdly)

unknown female ST, SG, crop,
tubule, hindgut, midgut

CG17575: p = 0.005 near-complete KD: 15/27
cont: 3/31
p = 0.0002
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or CG12558 induced normal levels of egg-laying and progeny

production in females for the first day after mating, but these

measures declined relative to controls as early as the second day

after mating. Females knocked down for CG5630 or Esp showed

the same pattern of normal fertility on day 1 after mating, but

reduced fertility in the following days. Females knocked down for

CG3239 had significantly reduced egg-laying and progeny

production even on the first day after mating, mimicking the

effects of knocking down SPR (Figure 2, Figure S2). These knock-

down females then continued to have lower egg and progeny

production throughout the assay. We further observed that knock-

down of any male gene or of the female gene Esp had no

significant effect on egg-hatchability, while knockdown of the

remaining female genes caused hatchability to be significantly

lower (Figures S3, S4). This effect was most pronounced in

CG3239 knockdown females, and much less severe in CG5630 and

SPR knockdown females. Effects on hatchability were unlikely to

be due primarily to reduced viability of offspring inheriting both

the UAS-RNAi construct and the GAL4 driver (see Text S1).

Thus, each of these six candidates identified by ERC is required

for both the long-term loss of remating receptivity and the long-

term maintenance of fertility. In our subsequent results and

discussion, we adopt new names for the previously unnamed

genes: male-expressed genes are named after lunar modules used

in the Apollo space program (CG14061: aquarius; CG30488:

antares; CG12558: intrepid), and female-expressed genes are named

after sites on the moon at which Apollo missions landed (CG3239:

fra mauro; CG5630: hadley).

The new male genes encode proteins predicted to belong to

functional classes often found in insect and mammalian seminal

fluid [33,34,67–69] and already represented in the SP network.

Like CG9997, aquarius and intrepid encode serine protease

homologs [70]; like CG17575, antares encodes a cysteine-rich

secretory protein. In females, fra mauro encodes a protein that

contains a partial, predicted neprilysin protease domain. Nepri-

lysins are a class of protease that preferentially cleave prohormones

and neuropeptides and are important for male and female fertility

in mammals [71–73] and Drosophila (J. Sitnik et al. submitted).

Neither annotated isoform of fra mauro is predicted by SignalP

[74] to be secreted or extracellular, raising the question of how this

protein could interact with SP network proteins. Inspection of the

59 untranslated region of fra mauro revealed the presence of a

potential alternative initiation codon, which is followed by a region

predicted by SignalP to encode a functional secretion signal

sequence. RT-PCR analysis on female cDNA found that a

product could be amplified when a forward primer is placed in this

region (data not shown), raising the possibility that an alternative

isoform of the protein may be secreted and thus more accessible to

other network proteins. In addition, we found this alternative start

codon and secretion signal to be conserved in at least 11 of 12

Drosophila species analyzed (the D. willistoni genome sequence

contains a sequencing gap in this region), which provides strong

evidence that this secreted protein isoform is functionally

important (Figure S5). The hadley protein is predicted to be

secreted, but its potential functional class remains unknown, as

neither conserved domain searching [75] nor three-dimensional

structural modeling [76] could identify a conserved protein

domain. The Esp gene was initially identified as a target of

homeotic genes [77] but is, otherwise, poorly characterized. While

the Esp protein is not predicted to be secreted, it shows homology

to transmembrane sulfate transporters. In adults, Esp is expressed

predominantly in the spermathecae [64], with additional expres-

sion reported in the seminal receptacle [39].

Molecular characterization of new SP network proteins
We next sought to position these six new proteins in the SP

network. To do so, we first used Western blotting to test whether

SP was successfully stored over the long-term in mates of

*Expression based on data from FlyAtlas [64]. Predicted functions are from FlyBase electronic annotations. Bold indicates statistical significance for positive candidates.
Abbreviations are as follows: AG = accessory gland; ST = spermatheca; FB = fat body; TG = thoracicoabdominal ganglion. For examples of near-complete and partial
knockdown, see Figure S7. KD: knockdown, cont: control. The 4-day recepetivity assay column shows the number of females remating out of the total number of
females tested for each condition; p-values are from Fisher’s exact tests.
doi:10.1371/journal.pgen.1004108.t001

Table 1. Cont.

Table 2. Tests of neighboring genes and additional ERC candidates for 4-day receptivity phenotypes.

Gene Name Predicted functional class Expression pattern*
Significant ERC
results

Amount of
knockdown

4-Day Receptivity
Assay

CG30486 CRISP male AG none (neighbor to
CG17575 and antr)

near-complete KD: 0/29
cont: 0/26
p = 1.00

CG34295 serine protease homolog male AG none (neighbor to intr) partial KD: 0/24
cont: 0/26
p = 1.00

sda alanine aminopeptidase ubiquitous, including
female ST

frma: p = 0.0051
CG17575: p = 0.0185
SP: p = 0.0262
hdly: p = 0.0268

near-complete KD: 5/29
cont: 3/31
p = 0.47

Esp sulfate transporter female ST, hindgut,
brain, ovary, testes

antr: p = 0.0036
CG9997: p = 0.0143

partial KD: 21/35
cont: 2/34
p,0.0001

*Abbreviations for expression patterns follow those listed in Table 1.
doi:10.1371/journal.pgen.1004108.t002

Coevolving Drosophila Reproductive Proteins

PLOS Genetics | www.plosgenetics.org 6 January 2014 | Volume 10 | Issue 1 | e1004108



knockdown males or in knockdown females. In wild-type matings,

SP is readily detectable from dissected female seminal receptacles

(SRs) 4 days after a mating. However, knockdown of any of the

known SP network proteins eliminates this retention [21,28]. We

observed that wild-type females mated to males knocked down for

aquarius, antares or intrepid showed little or no SP at 4 days after

mating (Figure 3). These reduced levels of SP were not due to less

SP having been transferred at mating (see Figure 4). These results

suggested that male proteins aquarius, antares and intrepid are each

required for network function at a step upstream of SP binding

sperm in the SR. By contrast, when wild-type males were mated to

fra mauro, hadley or Esp knockdown females, normal levels of SP

were observed at 4 days after mating (Figure 3). Thus, these female

proteins may be necessary for the utilization of SP after it becomes

stored in the SR or may be required for proper SP-SPR signaling.

To further determine where the new male proteins fit into the

network, we examined the production of the known SP network

proteins in males knocked down for aquarius, antares or intrepid

(Figure 4). In all cases, we observed no difference in the production

of SP, CG1652, CG1656, CG9997 and CG17575 between

knockdown and control males (Figure 4; compare lanes for

knockdown and control males). We then tested whether knockdown

males could transfer these proteins to females and examined their

processing in female reproductive tracts. Males knocked down for

intrepid transferred all proteins at equivalent levels to controls, and

females mated to these males showed normal CG9997 processing

[21] in their reproductive tracts. Males knocked down for aquarius or

antares transferred normal levels of SP, CG9997 and CG17575, but

much lower levels of CG1652 and CG1656 (Figure 4; compare

lanes for females mated to aquarius or antares knockdown or control

males). Consistent with the absence of these proteins in females after

mating [21], the post-mating processing of CG9997 was also

disrupted, with mates of knockdown males showing an increased

level of the 36-kDa form of CG9997 relative to the 45-kDa form of

this protein. We also examined the production and transfer of

seminase and observed no differences between knockdown and

control flies for each gene (data not shown).

Because SP is required for the release of sperm from storage

[27], we examined sperm storage and retention in the SRs of

females mated to males knocked down for each of these genes

(Figure 5). At 2 hours after mating, sperm from antares and intrepid

males were present in the SR at equivalent levels to controls, while

sperm from aquarius males were present at slightly lower levels.

However, by 10 days after mating, mates of control males had

largely depleted their stores of sperm in the SR, while mates of

males knocked down for any of the three genes showed

significantly higher numbers of sperm. Taken together with the

lack of SP retention (see Figure 3), these data confirm that male

proteins aquarius, antares and intrepid are each required for SP to

become bound to sperm. Disruption of this binding, in turn,

inhibits the ability of sperm to be released from the seminal

receptacle. This inability to release sperm from storage likely

contributes to the reduction in long-term fertility when each of

these male genes is knocked down (Figure 2).

Taken together, our results allow us to place aquarius, antares,

fra mauro, hadley and Esp into the SP network (Figure 6A). The

male proteins aquarius and antares act at the same step of the

network as CG9997, as each of these proteins is required for the

transfer of CG1652 and CG1656. The female proteins fra mauro,

hadley and Esp appear to act at the downstream end of the network,

after SP has bound to sperm. At present, we are unable to position

intrepid within the network, though its effect on SP retention

(Figure 3) suggests that it acts upstream of SP-SPR signaling.

A protein’s evolutionary correlations reflect its position in
the SP network

When comparing the positioning of these six new proteins in the

network to their patterns of ERC with the previous known seven

network proteins (Figure 6B), we observed that the new male

proteins showed their strongest correlations with the upstream

players of the network. In particular, each new male protein showed

a significant correlation with CG9997, which functions in the same

step of the network (CG1652/CG1656 transfer) as aquarius and

antares. At the downstream end of the pathway, two of the new

female proteins showed their strongest correlations with down-

stream players in the network, including SPR, which is consistent

with their potential functions. Thus, the patterns of ERC observed

between new and established network proteins are consistent with

the steps in the network in which these new proteins are found to act.

Discussion

We have used signatures of covariation in protein evolutionary

rates to investigate interactions between proteins that are required

to maintain post-mating responses in Drosophila females. We first

found that, as a group, proteins known to act in the SP network

[20,21,26,28] showed a significant signature of ERC. We then

used ERC to screen 434 male Sfps and female reproductive tract

proteins for those that correlated strongly with members of the SP

network. RNAi functional testing of 16 top candidates identified

five proteins that are each required for long-lasting SP responses in

females, including reducing a female’s willingness to remate and

boosting female egg production. Additional tests of two candidates

that showed high ERC with these new genes revealed a sixth

network protein. The new male proteins, aquarius, antares and

intrepid, act in the upstream part of the network: loss of any one of

these proteins prevents SP from becoming bound to sperm, which

in turn prevents sperm from being released from storage. Because

SP binds to sperm in females knocked down for fra mauro, hadley or

Esp, these proteins may affect the ability of SP to be used in

females and/or may be required for normal SP-SPR signaling.

Interestingly, the strongest evolutionary correlations between these

new proteins and the known members of the network often

occurred between pairs of proteins that appear to act in the same

part of the pathway. These results verify the utility of ERC and

suggest that this metric may be used prospectively to identify

candidates acting in a particular part of a pathway.

ERC efficiently identifies new types of network proteins
Our results suggest that ERC successfully prioritized a large set

of proteins for detailed functional testing; the observed success rate

Table 3. Tests of female remating receptivity 1 day after an
initial mating.

Gene Results FET p-value

CG14061 KD: 3/26, cont: 1/28 0.34

CG30488 KD: 0/32, cont: 4/26 0.0352*

CG12558 KD: 0/14, cont: 2/15 0.48

CG3239 KD: 3/37, cont: 2/39 0.67

CG5630 KD: 1/21, cont: 1/28 1.00

Esp KD: 3/23, cont: 0/23 0.23

*Result not in the expected direction for non-functioning SP pathway.
KD: knockdown, cont: control, FET: Fisher’s exact test.
doi:10.1371/journal.pgen.1004108.t003
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Figure 2. Fertility assays for new candidate SP network proteins identified by ERC. Each graph depicts the mean (6 SE) number of eggs
laid on each day of a 10-day fertility assay (knockdown: KD, dashed line; control: cont, solid line). For each male-expressed gene, knockdown or
control males were mated to wild-type females. For each female-expressed gene, wild-type males were mated to knockdown or control females.
Knockdown of each gene shown had a highly significant effect (corrected p,1026 in all cases) on overall fertility; results of statistical testing for
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was six positive hits out of 18 candidates tested, and this rate could

be higher if genetic redundancies or insufficient knockdown

prevented positive results for some candidates. This rate likely

represents a significant enrichment of network genes because if the

same success rate were applied to the full list of 434 reproductive

proteins, it would imply that there are 145 long-term mating

response genes waiting to be discovered in that list alone. Although

this is a formal possibility, this number seems high. Importantly,

ERC allowed us to explore new functional classes of protein from

the female reproductive tract. Previous studies [20,28] chose male-

expressed candidates based on molecular classes that were known

to function in sperm storage and fertilization. In contrast, ERC

directed us to proteins that unlikely would have been selected for

screening, as fra mauro was not annotated to be extracellular and

hadley had no predicted functional class. We can also prescribe a

strategy to improve ERC analysis by retrospectively analyzing the

positive candidates. Very strong correlations (p,0.01) tested

positive more often, so future applications of this method could

focus on single, strong correlations rather than those proteins that

correlate more weakly (p,0.05) with multiple network members.

Finally, we note that several reproductive proteins showed strong

signals of ERC with the SP network but were not quickly testable

because RNAi lines were not available. In cases like these,

emerging technologies such as the CRISPR/Cas9 system that is

now being optimized for Drosophila [78,79] may in the future

enable null mutants to be generated, which could potentially

expand the SP network further.

Possible functions for new network proteins
By expanding the SP network to include new proteins from both

sexes, our results provide a more complete picture of how SP

controls female post-mating responses. Until now, SPR was the

only known female regulator of SP action [26], but our results

show that fra mauro, hadley and Esp are also necessary for sperm-

bound SP to exert its long-term effects on females. In addition to

their expression in the spermathecae, each of these female genes is

expressed in regions other than the female reproductive tract [64].

SPR follows the same pattern: it is expressed in several repro-

ductive regions [26], including the spermathecae, and elsewhere in

the adult female. However, only six SPR-expressing neurons in the

reproductive tract are required for the SP response [23–25]. It is

also interesting to compare the fertility phenotypes for fra mauro,

hadley, Esp and SPR knockdown females (Figure 2). Knockdown of

fra mauro or SPR causes both a long-term fertility deficit and an

immediate reduction in egg-laying in the first 24 hours after

mating. In contrast, hadley or Esp knockdown females show normal

fertility on day 1, but then have reduced fertility over the following

days. Assuming that the extent of gene knockdown was sufficient

to reveal null-like phenotypes, one possible model to explain these

results could be that fra mauro is necessary to facilitate SP-SPR

signaling, while hadley and Esp are necessary for the efficient

release of SP from stored sperm. SP-SPR signaling is required for

full fertility at all time points after mating (Figure S2 and [26]), but

impaired release of SP from sperm affects fertility only after day 1

[19]. Another possibility is that fra mauro is required to coordinate

temporally the release of sperm from storage when eggs are

ovulated and ready to be fertilized. Furthermore, while knock-

down of fra mauro, hadley and SPR each caused a reduction in egg

hatchability, the magnitude of this effect was by far the greatest for

fra mauro (Figures S3, S4). Thus, in addition to laying significantly

fewer eggs than controls (Figure 2), fra mauro females also experience

far lower egg-to-adult viability. Finally, it is interesting to observe

that Esp is a predicted sulfate transporter. In mammalian systems,

anion concentration in the female reproductive tract is critical for

proper sperm function and fertility [80]. In Drosophila, it is possible

that attenuation of extracellular levels of anions such as sulfate in the

sperm storage organs affects Sfp-sperm binding, sperm storage, SP

release, or another process required for SP network function.

fertility on each day of the assay are shown on each graph. Control data points are offset horizontally from knockdown data points to facilitate
comparison, but all flies in each experiment were transferred from one vial to the next at the same time each day. Samples sizes for each treatment
range from 11 to 28. One representative biological replicate (out of 2–3 for each gene) is shown.
doi:10.1371/journal.pgen.1004108.g002

Figure 3. SP retention in mated females, 4 days after mating.
Western blots probed with antibodies to SP or alpha-tubulin (loading
control). Proteins were isolated from lower female reproductive tracts 4
days after mating. Gene names to the left of each pair of blots indicate
which gene was (KD) or was not (cont) knocked down in the mating
pair. Across all experiments, the number of female reproductive tract
(RT) equivalents used for each condition ranged from 13 to 20;
however, for any given gene, the number of RT equivalents compared
between KD and control was within 2 RTs.
doi:10.1371/journal.pgen.1004108.g003
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Two observations suggest that interactions between SP network

proteins may begin in the male. First, CG9997, aquarius and antares

are each required for lectins CG1652 and CG1656 to be

transferred efficiently to females [21] (Figure 4). It is possible that

one or more of the former proteins may bind to either lectin

protein as Sfps transit the male reproductive tract during mating.

Such binding could protect the lectins from proteolysis or modi-

fication. For instance, CG9997 and aquarius both encode serine

protease homologs that are predicted to have inactivating muta-

tions in their active sites [70]. It has been speculated that such

inactive proteases could act as competitive inhibitors of proteolytic

processing by binding to processing targets, rendering them less

accessible to the numerous active protease in the seminal fluid

[81]. Second, it is presently unclear whether intrepid is transferred

at mating, as previous proteomic experiments have not detected

this protein in mated females [33]. While intrepid may be transferred

but poorly detectable in mated females (e.g., due to low abundance

or rapid degradation), it may, alternatively, act in males to modify or

activate another network protein(s). Processing of Sfps within males

is observed in other cases. For example, the Drosophila seminal

metalloprotease CG11864 is processed in the male reproductive

tract during transfer to females, and this processing is required for

CG11864 to mediate the processing of additional Sfps in the female

reproductive tract [28,82] (B. LaFlamme, F. Avila et al., submitted).

In nematodes, interactions between a protease, TRY-5, and a

protease inhibitor, SWM-1, regulate the activation of sperm during

transit through the male reproductive tract [83–85]. Thus, it will be

interesting to determine whether any members of the SP network

are the agents or targets of processing within the male reproductive

tract. If network proteins are modified while still in the male, this

process may be regulated spatially and temporally by the sequestration

of interacting components into distinct compartments of the

reproductive tract, including the ejaculatory bulb [86] and vesicles

found in secondary cells of the accessory gland [87,88]. Such com-

partmentalization could ensure that interacting proteins do not

encounter each other until the appropriate time during or after mating.

Evolution of the SP network
Our results, combined with previous work [20,21,26,89],

suggest that at least 13 proteins participate in the SP-mediated

post-mating response in female Drosophila melanogaster. How did this

complex network arise, and how have its members evolved?

Orthologs of the sex peptide receptor (SPR) are found in diverse

insect taxa, including mosquitoes, silkworms and moths, and these

receptors are responsive to stimulation by D. melanogaster SP

[26,90]. However, SP has not been identified outside of Diptera; a

putative SP ortholog was identified by bioinformatics in Anopheles

[91], but the short length of SP makes it difficult to detect

orthologs in other species, including some drosophilids. Further-

more, the female post-mating responses of insects with SPR

orthologs often differ substantially from those of the melanogaster

group of Drosophila. For example, D. mojavensis females re-mate

more readily than D. melanogaster females [92], and while A. gambiae

females become unreceptive to further courtship after a single

mating, this behavioral change does not require the transfer of

sperm [93].

Within the genus Drosophila, other members of the network show

different levels of evolutionary conservation. We identified

orthologs of CG1652, CG1656, CG9997 and CG17575 in 11 of

12 sequenced Drosophila species (all but the most distant species, D.

grimshawi). Most of the new proteins we identified share this broad

distribution throughout the genus. Hadley and fra mauro are

Figure 4. Production, transfer and processing of SP network proteins in males knocked down for aquarius, antares or intrepid.
Western blots were probed with either an antibody to an SP network protein or a loading control. Alpha-tubulin was used as the loading control for
blots of CG9997, CG17575 and SP. Since CG1652 and CG1656 sometimes co-migrated with tubuiln, loading controls for these proteins were either a
consistently observed cross-reactive band or tubulin. Proteins were isolated from male reproductive tracts (‘‘male’’ columns) or lower female
reproductive tracts dissected 1 hour after the start of mating (‘‘female’’ columns). ‘‘KD’’ indicates males knocked down for aqrs, antr or intr or females
mated to a knockdown male, while ‘‘cont’’ indicates control males or females mated to a control male. Arrows next to the blots for CG9997 indicate
the ,45 (top) and ,36-kDa (bottom) forms of the protein [21]. Within each blot, the amount of RT equivalents loaded for each sex was equal. Across
blots, male lanes contain 0.5–1 RT equivalents; female lanes contain 2–4 RT equivalents.
doi:10.1371/journal.pgen.1004108.g004
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found in all 12 species, but appear not to have orthologs in

sequenced mosquito species (data not shown). Aquarius and

antares show the same species distribution as CG1652, CG1656,

CG9997 and CG17575. Esp orthologs are found in only ten

species, but these include one member of the more distantly

related Drosophila clade, D. mojavensis, suggesting an older origin

for this protein. In contrast, intrepid and seminase appear to have

evolved more recently, with orthologs detectable only in the

Sophophora clade. Orthologs of intrepid were found in 9 of 12

species (all but D. virilis, mojavensis and grimshawi), while seminase

orthologs were detected only in D. melanogaster-D. ananassae. Taken

together, these varying degrees of evolutionary conservation

suggest that the SP network, as it presently functions in D.

melanogaster, may have evolved in pieces over time. Indeed, the

emergence of the full SP network correlates with changes in

remating rate. Frequent mating (daily or more than once per day)

was inferred to be the ancestral condition for drosophilids, while

less frequent mating is derived and appears in those species (D.

melanogaster through D. pseudoobscura) that have all or nearly all of

the SP pathway components [94].

Some reproductive proteins of many species have evolved under

positive selection [95–97]. One proposed explanation for this

pattern suggests that males and females may experience sexual

conflict over some aspect of reproduction (e.g., the rate of female

remating). Substantial evidence suggests that sexual conflict occurs

in D. melanogaster [98–100] and is mediated by SP [101]. At the

molecular level, the result of sexual conflict could be continual

coevolution between male and female protein sequences. Popu-

lation genetic studies have detected evidence of recent selective

sweeps on SP [102] and CG9997 [103], but most other members

of the network appear well conserved [33]. One possible

explanation centers on the observation that SPR is sensitive to

multiple ligands [26,62,63], which may constrain its ability to

coevolve with SP and thus reduce the requirement for constant

coevolution. It will also be instructive to examine the molecular

evolution of all network members across the Drosophila phylogeny

Figure 5. Average number of sperm stored in the seminal
receptacles (SR) of wild-type females mated to knockdown or
control males for new SP network proteins. Average number of
sperm in female SRs at 2 hours (A) or 10 days (B) after mating to aqrs,
antr or intr knockdown (KD, gray) or control (cont, black) males. Each
bar indicates the mean; error bars indicate 1 standard error. *, p,0.01;
**, p,0.002; n.s. = not significant. Samples sizes for each treatment
range from 11 to 18.
doi:10.1371/journal.pgen.1004108.g005

Figure 6. An expanded network of proteins is required for SP
to bind sperm and to be utilized in mated females. (A) The SP
network. Colors of protein names indicate predicted protein functional
classes: red = protease or protease homolog; green = cysteine-rich
secretory protein (CRISP); dark blue = C-type lectin; light blue oval = SP;
purple = unknown function. Boxes indicate proteins discovered by ERC;
other proteins were described previously [21,28]. Intrepid acts upstream
of SP-SPR signaling, but at present we cannot position it further. (B)
New members of the SP network function at steps consistent with their
signals of ERC. New network proteins are shown in rows; known
network proteins are shown in columns. Each cell indicates the
empirical p-value associated with the protein’s pair ERC value. P-values
less than 0.05 are shaded in red; more intense shading indicates a
stronger correlation.
doi:10.1371/journal.pgen.1004108.g006
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and to determine whether any have experienced bursts of positive

selection on the same phylogenetic lineages, as might be predicted

for proteins showing patterns of ERC [50].

Conclusions
We have shown that signatures of evolutionary rate covariation

can be used prospectively to identify new members of a protein

network. In the context of the Drosophila SP pathway, this genomic

approach allowed us to efficiently screen hundreds of known

reproductive proteins so as to prioritize candidates for functional

analysis, thereby identifying new long-term mating response

proteins from both males and females. Interestingly, male and

female proteins appear to participate in distinct sections of the SP

network, and this separation was reflected in their signatures of

correlated evolution. We believe that the ERC approach will be

broadly applicable to identifying new members of other protein

networks in any taxa for which comparative genomic data are

available.

Methods

Reproductive proteins data sets
We used a combination of published proteomic and transcrip-

tomic data sets and genome-wide expression data to create three

sets of reproductive genes used in the analysis: seminal fluid

proteins (Sfps), female reproductive tract proteins, and sperm

proteins. The first set consisted of 208 genes encoding Sfps that

had been identified by mass spectrometry in the reproductive

tracts of mated females [32,33] or predicted secreted proteins from

the male accessory gland [34]. The second set included 226 genes

expressed in the female sperm storage organs. This set included

the D. melanogaster orthologs of EST sequences identified from the

spermathecae of D. simulans [36,38] and EST sequences identified

from the seminal receptacle of D. melanogaster [39]. We removed

from these sets annotated housekeeping genes (e.g., ribosomal and

mitochondrial proteins) since they were unlikely to interact with

proteins in the SP network. Because EST sequencing may not

sample all relevant genes, we then supplemented these genes with

genes identified in FlyAtlas [64] to be predominantly expressed in

the spermathecae (the only female sperm storage organ for which

genome-wide expression data are available). The third set included

322 genes that encode proteins in the D. melanogaster sperm

proteome [30,31] and that were found in FlyAtlas to be

predominantly expressed in the testis. This filtering was performed

to enrich for proteins likely to function specifically in reproduction,

since proteins involved in additional biological processes may

interact with several partners and thus show dampened signals of

ERC. While we used all three sets of genes (756 genes in total) for

optimizing the ERC method (see below), we focused our further

functional tests on ERC candidates identified from the seminal

fluid and sperm storage organ gene sets (434 in total).

Alignment of orthologous protein coding sequences
from 12 species

We identified orthologous genes from 12 Drosophila species using

a combination of high-throughput and manual searching. Protein

amino acid sequences were produced by the Drosophila 12

Genomes project and downloaded from FlyBase (http://flybase.

org) [61]. The species were: Drosophila melanogaster, sechellia, simulans,

yakuba, erecta, ananassae, pseudoobscura, persimilis, willistoni, grimshawi,

virilis, and mojavensis. Orthologs were identified using InParanoid,

and the resulting groups were aligned by MUSCLE [104,105].

Many alignments were missing species either due to evolutionary

loss or missed gene annotation. To increase the number of species

and thereby improve our power, we manually searched for

unannotated genes in the 11 non-melanogaster species using a

combination of tBLASTn and BLAT. This effort added 81

previously unannotated sequences to a total of 31 alignments.

Genome-wide Evolutionary Rate Covariation (ERC)
analysis across 12 Drosophila species

To perform ERC analysis, we first calculated the amount of

amino acid divergence for each branch in the species tree for each

of the 11,100 orthologous protein alignments produced above; this

was done using ‘aaml’ of the PAML package [106]. Next, raw

branch lengths were transformed into rates of evolution relative to

the expected branch length. This projection operation, introduced

by Sato et al. [58], removes the inherent correlation of all proteins

due to the underlying species tree and improves the power of ERC

to resolve functionally related protein pairs from unrelated pairs

[55,58]. Finally, we used these corrected branch-specific rates to

calculate the correlations for all pairs of proteins, resulting in a

proteome-by-proteome matrix of correlation coefficients, termed

the ERC matrix. To limit the effect of outlier points, we limited all

rates to 2 standard deviations from the mean.

In spite of our efforts (above) to improve species coverage, most

alignments were missing at least one species. We set a minimum

species threshold at 5, so species representation ranged from 5 to

12. This heterogeneity required us to create a flexible system to

compare ERC results between different sets of species. A table of

relative rates (projection operation, above) was produced for each

unique set of species shared between protein pairs, resulting in

1,815 projections. Importantly, the distribution of ERC values

varied depending on the particular set of species employed. For

example, the variance of ERC values is consistently larger for

smaller numbers of species (Figure S6). To correct for these effects

we converted every observed ERC value in to an empirical p-value

based on the observed distribution of ERC values for that

particular set of species. The comparison of p-values allowed us to

compare ERC results across all protein pairs. Hence, we report all

ERC results as p-values ranging from 0 to 1, where a lower value

indicates stronger evidence for rate correlation.

Significance testing for elevated ERC values in a set of proteins

was performed using a proteome-wide permutation test (Figure

S1A). The mean ERC value observed between all pairs in the

tested set, such as the SP network, was compared to the mean

ERC values of 10,000 sets of the same number of proteins

randomly chosen from the entire proteome. A p-value for the

tested set was computed as the proportion of random sets that had

a mean ERC value equal to or greater than the tested set of

proteins. Randomly chosen ERC values were taken from the same

species-matched projections as in the observed set, which

controlled for variation in ERC distributions due to different sets

of species present in those genes.

The ‘‘reproductive protein only’’ analysis (Figure S1B–C) was

performed as above, except that analysis was limited to the 756

Sfps, female proteins, and sperm proteins described above. We

further limited this set to the 664 proteins that had detectable

orthologs in at least 5 species. Significance testing for single pairs

and for sets of proteins was performed as above, through empirical

p-values. Calculations of pairwise correlations between pairs of

known network proteins and between known network proteins and

members of the sets of Sfps and female proteins were performed

using this reproductive protein set.

RNA interference (RNAi)
To knock down expression of candidate genes, we used a variety

of RNAi lines and drivers. Most lines were second-generation
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(KK) RNAi lines provided by the Vienna Drosophila RNAi Center

(www.vdrc.at) [107]; several others were either provided by the

Transgenic RNAi Project (TRiP; Harvard University) [108] or

constructed in house using the pVALIUM20 vector [109,110]

provided by the TRiP. When possible, we used the tubulin-GAL4

driver to knockdown genes ubiquitously, but in some cases knock-

down with this driver caused lethality. When ubiquitous knock-

down of a male-expressed Sfp gene caused lethality, we first

attempted to use the prd-GAL4 driver [111] to knockdown expression

in the accessory glands. However, we observed phenotypes consis-

tent with SP network malfunction when this driver was crossed to a

control background strain that does not induce RNAi. Thus, we

instead used the ovulin-GAL4 driver [17] to knock down male Sfp

genes. To knockdown female genes expressed in the spermathecae,

we used the Send1-GAL4 driver [112], sometimes in combination

with a UAS-Dicer2 sequence to enhance RNA interference. The

RNAi line numbers, specific crosses and genetic controls used are

given in Tables S1 and S3. All flies were reared on a 12 hr/12 hr

light-dark cycle. Most crosses were performed at room temperature

(22uC61u); some were instead performed at 25u to attempt to

induce greater knockdown.

We determined the degree of knockdown by using RT-PCR

[20,28] to measure the expression level of each RNAi-targeted

gene in knockdown flies and their respective controls, using

amplification of the RpL32 transcript as a positive control (see

Protocol S1 for further details). For tubulin-GAL4 knockdown, we

analyzed RNA isolated from whole flies; for tissue-specific

knockdown, we analyzed RNA isolated from dissected reproduc-

tive tracts. We qualitatively scored the degree of knockdown as

‘‘complete/near complete,’’ ‘‘partial,’’ or ‘‘no detectable knock-

down’’, and we chose for functional analyses only those genes (16

of 21 tested) that showed at least partial knockdown. Figure S7

shows knockdown levels for all positive candidates.

Screens for reproductive phenotypes
For several days after an initial mating, females are reluctant to

remate in a one-hour, single-pair test, but only if the SP network is

functioning properly [19,20]. Thus, we initially screened each

candidate gene for its effects on a female’s willingness to remate

within 1 hour, 4 days after an initial mating, using previously

described methods [20]. Positive candidates were then evaluated

by the same assay for remating receptivity at 1 day after mating,

and for fertility, fecundity and egg hatchability over 10 days after

an initial mating. These assays were performed according to

previously described methods, with minor modifications. For more

detail, see Protocol S1.

Confirmation of RNAi phenotypes
While all RNAi lines used above were designed to specifically

minimize off-target effects [107,108], we also confirmed that the

phenotypes we observed were due specifically to the knockdown of

the intended target. We first confirmed that all RNAi-triggering

constructs had no predicted off-target effects against the most

current D. melanogaster gene annotations [66]. We then tested an

additional RNAi line for all genes for which such a line was

available (antares, fra mauro, hadley and Esp). These tests controlled

for either the insertion site of the RNAi-triggering construct or

both the insertion site and the sequence of the RNAi-triggering

construct, depending on which type of additional line was avail-

able. Details of these lines are given in Table S3. Finally, we note

that our rate of positive hits in our screen (33 percent; 6 out of 18

ERC-identified candidates) is dramatically higher than previous

estimates of RNAi effects on cell viability (maximum rate: 2.2

percent, including both true positive effects and potential off-targets)

[113]. Thus, our results are unlikely to be due to off-target effects or

general effects on cell viability.

Western blotting
To examine the production, transfer and processing of known

SP network proteins in flies knocked down for a newly identified

candidate, we performed Western blot experiments using available

antibodies to SP, CG1652, CG1656, CG9997 and CG17575 as

previously described [21]. For each positive candidate, we first

tested whether SP was retained on sperm over the long term by

dissecting 13–20 lower female reproductive tracts for each treat-

ment at 4 days after the start of mating (ASM). While the number

of female reproductive tracts per lane across experiments varied

within this range, pairs of samples being compared never differed

by more than 2 tracts. Extracted proteins were run on 15%

acrylamide gels, transferred to membranes, and then probed for

SP and alpha-tubulin (as a loading control) as previously described.

For candidates that caused a reduction of SP levels in females at

4 days ASM, we then evaluated the production, processing and

transfer of the known network proteins by testing for their

presence in male reproductive tracts and in mated females at 1 hr

ASM. Proteins were separated on 10.6% acrylamide gels and then

transferred and probed for as described previously. Approximately

0.5–1 male reproductive tract equivalents and 2–4 lower female

reproductive tract equivalents were loaded in each lane. While the

number of female reproductive tract equivalents per lane varied

between blots for different SP network proteins, comparisons

between knockdown and control flies for any given protein were

performed with an equal number of reproductive tracts in each

lane. As a loading control for each blot, we primarily used alpha-

tubulin. In cases where CG1652 and CG1656 co-migrated with

alpha-tubulin, we also examined a consistently observed cross-

reactive band.

Supporting Information

Figure S1 Flow chart of ERC comparisons and screening. This

diagram provides a conceptual view of the evolutionary rate

covariation calculations described in the main text. (A) We first

tested for whether the seven previously known members of the SP

network showed a significant increase in their mean pairwise

correlations by comparing them to sets of proteins drawn from the

whole D. melanogaster proteome (left side). However, we also

observed a slight but significant increased mean pairwise

correlation when screening entire sets of reproductive proteins

against the whole proteome (right side). (B) Because of this, we next

controlled for the reproductive protein background effect by

comparing the SP network proteins to randomly drawn sets of

other reproductive proteins. The SP network proteins’ mean

pairwise correlation remained highly significant. (C) Finally, we

screened five known SP network proteins against sets of male

seminal proteins (Sfps) and female sperm storage organ proteins,

434 in total. We initially tested 16 highly correlated candidates and

identified five new network members. We then screened these five

new members against the large sets of reproductive proteins and

identified a sixth new network member, Esp.

(PDF)

Figure S2 Fertility assay for females knocked down for SPR.

This graph depicts the mean (6 SE) number of eggs laid on each

day of a 10-day fertility assay involving females knocked down for

SPR (KD, dashed line; n = 16) and their controls (cont, solid line;

n = 23). As previously reported, we observed a significant effect of

knockdown on overall fertility (p,1026), as well as significant

differences on days 1–8 of the assay. Control data points are offset
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horizontally from knockdown data points to facilitate comparison,

but all flies in each experiment were transferred from one vial to

the next at the same time each day. These data are from one

representative biological replicate.

(PDF)

Figure S3 Overall rates of egg hatchability during 10-day

fertility experiments. Each boxplot shows the distribution of egg

hatchability rates for matings involving knockdown (KD) or

control (cont) flies for each candidate gene. The thick black line

represents the median rate of egg hatching across the entire 10-day

assay; thin lines indicate the first and third quartiles; dots indicate

outliers that lie further beyond the edge of box than 1.56 the

interquartile range. P-values below each graph indicate results

from statistical testing; after Bonferroni correction, p,0.0083 are

considered significant. These data come from the experiments

depicted in Figure 2.

(PDF)

Figure S4 Day-by-day hatchability for female genes fra mauro

(CG3239), hadley (CG5630) and SPR. Each point represents the total

proportion of all eggs laid by all knockdown (KD) or control (cont)

females that hatched on a given day during a 10-day fertility assay.

These data come from the experiments depicted in Figure 2.

(PDF)

Figure S5 Alignment of protein sequences obtained by translat-

ing the 59 untranslated region and the annotated coding region of

the fra mauro gene in 12 Drosophila species.

(PDF)

Figure S6 ERC values are more tightly distributed when more

species are available for analysis. For each graph, 10,000 pairs of

proteins were chosen randomly from the entire D. melanogaster

proteome. ERC values were calculated using protein sequences

from either (A) five closely related species (D. melanogaster, simulans,

sechellia, yakuba and erecta) or (B) all 12 fully sequenced species of

Drosophila [61].

(TIFF)

Figure S7 RT-PCR results verify RNAi knockdown for positive

ERC candidate genes. Each gel shows PCR amplicons from

reactions performed with a template of: cDNA synthesized from

either knockdown (KD) or control (cont) flies of the appropriate

sex, D. melanogaster genomic DNA (gDNA), or, as a negative control,

water (H2O). In all cases, flies knocked down for a candidate gene

showed either complete/near-complete (aqrs, antr, intr, hdly) or

partial (frma) knockdown. When possible, RT-PCR primers were

designed so that multiple exons would be amplified, resulting in

larger products when gDNA was used as a template.

(PDF)

Protocol S1 Supporting methods.

(PDF)

Table S1 RNAi lines, drivers and crosses used in this study.

(PDF)

Table S2 Genomic locations of SP network proteins in Drosophila

melanogaster.

(PDF)

Table S3 Measures of receptivity and fertility for additional

RNAi lines for positive ERC candidate genes.

(PDF)

Text S1 Supporting results text testing for whether the egg

hatching defects observed in fra mauro or hadley females could be

explained by reduced offspring viability.

(PDF)
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