15 research outputs found

    Theophylline: Adverse Effects, Poisoning And Treatment Approaches

    No full text
    ScopusTr-Dizi

    Toxicity, mutagenicity and stability assessment of simply produced electrolyzed water as a wound healing agent in vitro

    No full text
    Over the last decade, electrolyzed water (EW) produced by salt and tap water has gained importance due to its antimicrobial effects. Regarding to chlorine-based compounds, EW also used in post-harvest safety of food processing and sterilization of surfaces. The latest studies suggested that EW might act as wound healing agent due to anti-infective and cell proliferative properties. In this study, we evaluated acute contact cytotoxicity in L929 mice fibroblast cells and wound healing activity of EWsin vitro.In addition, mutagenic activity was evaluated by Ames test with and without metabolic activation by S9 fraction and the stability profile of freshly prepared EWs has been followed up. According to the results, strong acid (StAEW) and mixed EW (MEW) showed dose-dependent cytotoxicity due to possible high HOCl concentration, while slightly acidic and catholyte EW (CEW) were not cytotoxic even applied directly for 30 sec. Further, StAEW and CEW showed a significant increase in L929 cell migration in scratch assay. Likewise, with/ without metabolic activation, neither of EWs had shown mutagenic profile in TA 98 and TA100 strains ofSalmonella typhimurium.Follow-up of ORP (oxidation-reduction potential), pH and FCC (free chlorine concentration) showed that temperature and light were important storage conditions to maintain a stable profile particularly for ORP and FCC, which are the most important indicators for biological activity of EW. According to the present findings, it can be suggested that particularly StAEW, may represent a valuable wound healing agent with an achievable, economical and easy production system when stored under proper conditions.TUBITAK (Turkish Research and Scientific Council)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [116Z169]The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This project was financially supported by TUBITAK (Turkish Research and Scientific Council) 1002 program with a Grant No. 116Z169. The authors also thank to Gulenay Alyurt for her considerate effort on EW project.WOS:0005685357000012-s2.0-85090558478PubMed: 3290982

    Synthesis, anticancer activity, toxicity evaluation and molecular docking studies of novel phenylaminopyrimidine-(thio)urea hybrids as potential kinase inhibitors

    No full text
    Thirty-two novel urea/thiourea compounds as potential kinase inhibitor were designed, synthesized and evaluated for their cytotoxic activity on breast (MCF7), colon (HCT116) and liver (Huh7) cancer cell lines. Compounds 10, 19 and 30 possessing anticancer activity with IC50 values of 0.9, 0.8 and 1.6 mu M respectively on Huh7 cells were selected for further studies. These hit compounds were tested against liver carcinoma panel. Real time cell electronic sensing assay was used to evaluate the effects of the compounds 10, 19 and 30 on the growth pattern of liver cancer cells. Apoptotic cell death and cell cycle analysis upon treatment of liver carcinoma cells with hit compounds were determined. A significant apoptotic cell death was detected upon treatment of Huh7 and Mahlavu cells with compound 30 after 48 h of treatment. Additionally, compound 10 caused cell cycle arrest at G0/G1 phase. Mutagenicity of hit compounds was evaluated. Assertively, these compounds were not found to be mutagenic on Salmonella typhimurium strains TA98 and TA100. To understand the binding modes of the synthesized compounds, molecular docking studies were performed using the crystal data of VEGFR and Src-kinase enzymes in correlation with anticancer activities
    corecore