1,871 research outputs found

    Stability of latitudinal differential rotation in stars

    Full text link
    The question is addressed whether stellar differentially rotating radiative zones (like the solar tachocline) excite nonaxisymmetric r-modes which can be observed. To this end the hydrodynamical stability of latitudinal differential rotation is studied. The amount of rotational shear required for the instability is estimated in dependence of the character of radial stratification and the flow patterns excited by the instability are found. The eigenvalue equations for the nonaxisymmetric disturbances are formulated in 3D and then solved numerically. Radial displacements and entropy disturbances are included. The equations contain the 2D approximation of strictly horizontal displacements as a special limit. The critical magnitude of the latitudinal differential rotation for onset of the instability is considerably reduced in the 3D theory compared to the 2D approximation. The instability requires a subadiabatic stratification. It does not exist in the bulk of convection zone with almost adiabatic stratification but may switch on near its base in the region of penetrative convection. Growth rates and symmetry types of the modes are computed in dependence on the rotation law parameters. The S1 mode with its transequatorial toroidal vortices is predicted as the dominating instability mode. The vortices show longitudinal drift rates retrograde to the basic rotation which are close to that of the observed weak r-mode signatures at the solar surface.Comment: 5 pages, 6 figure

    Magnetic field confinement by meridional flow and the solar tachocline

    Full text link
    We show that the MHD theory that explains the solar tachocline by an effect of the magnetic field can work with the decay modes of a fossil field in the solar interior if the meridional flow of the convection zone penetrates slightly the radiative zone beneath. An equatorward flow of about 10 m/s penetrating to a maximum depth of 1000 km below the convection zone is able to generate almost horizontal field lines in the tachocline region so that the internal field is almost totally confined to the radiative zone. The theory of differential solar rotation indeed provides meridional flows of about 10 m/s and a penetration depth of < 1000 km for viscosity values that are characteristic of a stable tachocline.Comment: 5 pages, 6 figures, submitted to A&

    A Ground-Based Search for Thermal Emission from the Exoplanet TrES-1

    Get PDF
    Eclipsing planetary systems give us an important window on extrasolar planet atmospheres. By measuring the depth of the secondary eclipse, when the planet moves behind the star, we can estimate the strength of the thermal emission from the day side of the planet. Attaining a ground-based detection of one of these eclipses has proven to be a significant challenge, as time-dependent variations in instrument throughput and atmospheric seeing and absorption overwhelm the small signal of the eclipse at infrared wavelengths. We gathered a series of simultaneous L grism spectra of the transiting planet system TrES-1 and a nearby comparison star of comparable brightness, allowing us to correct for these effects in principle. Combining the data from two eclipses, we demonstrate a detection sensitivity of 0.15% in the eclipse depth relative to the stellar flux. This approaches the sensitivity required to detect the planetary emission, which theoretical models predict should lie between 0.05-0.1% of the stellar flux in our 2.9-4.3 micron bandpass. We explore the factors that ultimately limit the precision of this technique, and discuss potential avenues for future improvements.Comment: 10 pages, 1 table, four figures, accepted for publication in PAS

    Sherlock: An Automated Follow-Up Telescope for Wide-Field Transit Searches

    Get PDF
    The most significant challenge currently facing photometric surveys for transiting gas-giant planets is that of confusion with eclipsing binary systems that mimic the photometric signature. A simple way to reject most forms of these false positives is high-precision, rapid-cadence monitoring of the suspected transit at higher angular resolution and in several filters. We are currently building a system that will perform higher-angular-resolution, multi-color follow-up observations of candidate systems identified by Sleuth (our wide-field transit survey instrument at Palomar), and its two twin system instruments in Tenerife and northern Arizona.Comment: 4 pages, 3 figures, to appear in AIP Conf Proc: The Search for Other Worlds, eds. S. S. Holt & D. Demin

    Out-of-equilibrium dynamical fluctuations in glassy systems

    Full text link
    In this paper we extend the earlier treatment of out-of-equilibrium mesoscopic fluctuations in glassy systems in several significant ways. First, via extensive simulations, we demonstrate that models of glassy behavior without quenched disorder display scalings of the probability of local two-time correlators that are qualitatively similar to that of models with short-ranged quenched interactions. The key ingredient for such scaling properties is shown to be the development of a critical-like dynamical correlation length, and not other microscopic details. This robust data collapse may be described in terms of a time-evolving Gumbel-like distribution. We develop a theory to describe both the form and evolution of these distributions based on a effective sigma-model approach.Comment: 20 pages, RevTex, 9 figure

    On the Penetration of Meridional Circulation below the Solar Convection Zone II: Models with Convection Zone, the Taylor-Proudman constraint and Applications to Other Stars

    Full text link
    The solar convection zone exhibits a strong level of differential rotation, whereby the rotation period of the polar regions is about 25-30% longer than the equatorial regions. The Coriolis force associated with these zonal flows perpetually "pumps" the convection zone fluid, and maintains a quasi-steady circulation, poleward near the surface. What is the influence of this meridional circulation on the underlying radiative zone, and in particular, does it provide a significant source of mixing between the two regions? In Paper I, we began to study this question by assuming a fixed meridional flow pattern in the convection zone and calculating its penetration depth into the radiative zone. We found that the amount of mixing caused depends very sensitively on the assumed flow structure near the radiative--convective interface. We continue this study here by including a simple model for the convection zone "pump", and calculating in a self-consistent manner the meridional flows generated in the whole Sun. We find that the global circulation timescale depends in a crucial way on two factors: the overall stratification of the radiative zone as measured by the Rossby number times the square root of the Prandtl number, and, for weakly stratified systems, the presence or absence of stresses within the radiative zone capable of breaking the Taylor-Proudman constraint. We conclude by discussing the consequences of our findings for the solar interior and argue that a potentially important mechanism for mixing in Main Sequence stars has so far been neglected.Comment: 42 pages, 13 figures. Submitted to Ap

    [N]pT Monte Carlo Simulations of the Cluster-Crystal-Forming Penetrable Sphere Model

    Full text link
    Certain models with purely repulsive pair interactions can form cluster crystals with multiply-occupied lattice sites. Simulating these models' equilibrium properties is, however, quite challenging. Here, we develop an expanded isothermal-isobaric [N]pT[N]pT ensemble that surmounts this problem by allowing both particle number and lattice spacing to fluctuate. We apply the method with a Monte Carlo simulation scheme to solve the phase diagram of a prototypical cluster-crystal former, the penetrable sphere model (PSM), and compare the results with earlier theoretical predictions. At high temperatures and densities, the equilibrium occupancy nceqn_{\mathrm{c}}^{\mathrm{eq}} of face-centered cubic (FCC) crystal increases linearly. At low temperatures, although nceqn_{\mathrm{c}}^{\mathrm{eq}} plateaus at integer values, the crystal behavior changes continuously with density. The previously ambiguous crossover around T∼0.1T\sim0.1 is resolved

    Small angle neutron scattering contrast variation reveals heterogeneities of interactions in protein gels

    Get PDF
    The structure of model gluten protein gels prepared in ethanol/water is investigated by small angle X-ray (SAXS) and neutrons (SANS) scattering. We show that gluten gels display radically different SAXS and SANS profiles when the solvent is (at least partially) deuterated. The detailed analysis of the SANS signal as a function of the solvent deuteration demonstrates heterogeneities of sample deuteration at different length scales. The progressive exchange between the protons (H) of the proteins and the deuteriums (D) of the solvent is inhomogeneous and 60 nm large zones that are enriched in H are evidenced. In addition, at low protein concentration, in the sol state, solvent deuteration induces a liquid/liquid phase separation. Complementary biochemical and structure analyses show that the denser protein phase is more protonated and specifically enriched in glutenin, the polymeric fraction of gluten proteins. These findings suggest that the presence of H-rich zones in gluten gels would arise from the preferential interaction of glutenin polymers through a tight network of non-exchangeable intermolecular hydrogen bonds.Comment: Soft Matter, Royal Society of Chemistry, 201

    A Spitzer Spectrum of the Exoplanet HD 189733b

    Get PDF
    We report on the measurement of the 7.5-14.7 micron spectrum for the transiting extrasolar giant planet HD 189733b using the Infrared Spectrograph on the Spitzer Space Telescope. Though the observations comprise only 12 hours of telescope time, the continuum is well measured and has a flux ranging from 0.6 mJy to 1.8 mJy over the wavelength range, or 0.49 +/- 0.02% of the flux of the parent star. The variation in the measured fractional flux is very nearly flat over the entire wavelength range and shows no indication of significant absorption by water or methane, in contrast with the predictions of most atmospheric models. Models with strong day/night differences appear to be disfavored by the data, suggesting that heat redistribution to the night side of the planet is highly efficient.Comment: 12 pages, 3 figures, accepted for publication in the Astrophysical Journal Letter

    A cool starspot or a second transiting planet in the TrES-1 system?

    Full text link
    We investigate the origin of a flux increase found during a transit of TrES-1, observed with the HST. This feature in the HST light curve cannot be attributed to noise and is supposedly a dark area on the stellar surface of the host star eclipsed by TrES-1 during its transit. We investigate the likeliness of two possible hypothesis for its origin: A starspot or a second transiting planet. We made use of several transit observations of TrES-1 from space with the HST and from ground with the IAC-80 telescope. On the basis of these observations we did a statistical study of flux variations in each of the observed events, to investigate if similar flux increases are present in other parts of the data set. The HST observation presents a single clear flux rise during a transit whereas the ground observations led to the detection of two such events but with low significance. In the case of having observed a starspot in the HST data, assuming a central impact between the spot and TrES-1, we would obtain a lower limit for the spot radius of 42000 km. For this radius the spot temperature would be 4690 K, 560 K lower then the stellar surface of 5250 K. For a putative second transiting planet we can set a lower limit for its radius at 0.37 RJ_J and for periods of less than 10.5 days, we can set an upper limit at 0.72 RJ_J. Assuming a conventional interpretation, then this HST observation constitutes the detection of a starspot. Alternatively, this flux rise might also be caused by an additional transiting planet. The true nature of the origin can be revealed if a wavelength dependency of the flux rise can be shown or discarded with a higher certainty. Additionally, the presence of a second planet can also be detected by radial velocity measurements.Comment: 8 pages, 6 figures, accepted for publication in A&
    • …
    corecore