374 research outputs found

    Skeletal trade-offs in coralline algae in response to ocean acidification

    Get PDF
    Ocean acidification is changing the marine environment, with potentially serious consequences for many organisms. Much of our understanding of ocean acidification effects comes from laboratory experiments, which demonstrate physiological responses over relatively short timescales. Observational studies and, more recently, experimental studies in natural systems suggest that ocean acidification will alter the structure of seaweed communities. Here, we provide a mechanistic understanding of altered competitive dynamics among a group of seaweeds, the crustose coralline algae (CCA). We compare CCA from historical experiments (1981-1997) with specimens from recent, identical experiments (2012) to describe morphological changes over this time period, which coincides with acidification of seawater in the Northeastern Pacific. Traditionally thick species decreased in thickness by a factor of 2.0-2.3, but did not experience a change in internal skeletal metrics. In contrast, traditionally thin species remained approximately the same thickness but reduced their total carbonate tissue by making thinner inter-filament cell walls. These changes represent alternative mechanisms for the reduction of calcium carbonate production in CCA and suggest energetic trade-offs related to the cost of building and maintaining a calcium carbonate skeleton as pH declines. Our classification of stress response by morphological type may be generalizable to CCA at other sites, as well as to other calcifying organisms with species-specific differences in morphological types

    Prevalence of genetic polymorphisms in the promoter region of the alpha-1 antitrypsin (SERPINA1) gene in chronic liver disease: a case control study

    Get PDF
    Contains fulltext : 89639.pdf (publisher's version ) (Open Access)BACKGROUND: Alpha-1 antitrypsin (A1AT) deficiency, caused by the Z allele (p.E342K) and S allele (p.E264V) in the SERPINA1 gene, can induce liver and pulmonary disease. Different mechanisms appear to be responsible for the pathogenesis of these divergent disease expressions. The c.-1973T >C polymorphism located in the SERPINA1 promoter region is found more frequent in A1AT deficiency patients with liver disease compared to patients with pulmonary disease, but data are lacking regarding contribution to the development of liver diseases caused by other aetiologies. AIM: To study the prevalence of c.-1973T >C, Z allele and S allele in a cohort of patients with liver disease of various aetiologies compared with healthy controls and to evaluate its effect on disease progression. METHODS: A total of 297 patients with liver disease from various aetiologies and 297 age and gender matched healthy controls were included. The c.-1973T >C polymorphism and Z and S alleles of the SERPINA1 gene were analyzed by real-time PCR. RESULTS: c.-1973T >C was similarly distributed between patients with liver disease of various origins and healthy controls. Furthermore, the distribution of c.-1973T >C was independent from aetiology subgroup. In patients with liver disease mean ages at of onset of liver disease were 44.4, 42.3 and 40.7 years for the c.-1973 T/T, T/C and C/C genotype respectively (NS). S allele heterozygosity was increased in patients with drug induced liver injury (DILI), (OR 4.3; 95%CI 1.1-17.2). CONCLUSION: In our study, c.-1973T >C polymorphism was not a risk factor for liver disease of various aetiologies. In addition, S allele heterozygosity might contribute to the development of DILI

    Biallelic CPAMD8 variants are a frequent cause of childhood and juvenile open-angle glaucoma

    Get PDF
    Purpose: Developmental abnormalities of the ocular anterior segment in some cases can lead to ocular hypertension and glaucoma. CPAMD8 is a gene of unknown function recently associated with ocular anterior segment dysgenesis, myopia, and ectopia lentis. We sought to assess the contribution of biallelic CPAMD8 variants to childhood and juvenile open-angle glaucoma. Design: Retrospective, multicenter case series. Participants: A total of 268 probands and their relatives with a diagnosis of childhood or juvenile open-angle glaucoma. Methods: Patients underwent a comprehensive ophthalmic assessment, with DNA from patients and their relatives subjected to genome, exome, or capillary sequencing. CPAMD8 RNA expression analysis was performed on tissues dissected from cadaveric human eyes. Main outcome measures: Diagnostic yield within a cohort of childhood and juvenile open-angle glaucoma, prevalence and risk of ophthalmic phenotypes, and relative expression of CPAMD8 in the human eye. Results: We identified rare (allele frequency -5) biallelic CPAMD8 variants in 5.7% (5/88) of probands with childhood glaucoma and 2.1% (2/96) of probands with juvenile open-angle glaucoma. When including family members, we identified 11 individuals with biallelic variants in CPAMD8 from 7 unrelated families. Nine of these individuals were diagnosed with glaucoma (9/11, 81.8%), with a mean age at diagnosis of 9.22±14.89 years, and all individuals with glaucoma required 1 or more incisional procedures to control high intraocular pressure. Iris abnormalities were observed in 9 of 11 individuals, cataract was observed in 8 of 11 individuals (72.7%), and retinal detachment was observed in 3 of 11 individuals (27.3%). CPAMD8 expression was highest in neural crest-derived tissues of the adult anterior segment, suggesting that CPAMD8 variation may cause malformation or obstruction of key drainage structures. Conclusions: Biallelic CPAMD8 variation was associated with a highly heterogeneous phenotype and in our cohorts was the second most common inherited cause of childhood glaucoma after CYP1B1 and juvenile open-angle glaucoma after MYOC. CPAMD8 sequencing should be considered in the investigation of both childhood and juvenile open-angle glaucoma, particularly when associated with iris abnormalities, cataract, or retinal detachment

    Determinants of Initiation Codon Selection during Translation in Mammalian Cells

    Get PDF
    Factors affecting translation of mRNA contribute to the complexity of eukaryotic proteomes. In some cases, translation of a particular mRNA can generate multiple proteins. However, the factors that determine whether ribosomes initiate translation from the first AUG codon in the transcript, from a downstream codon, or from multiple sites are not completely understood. Various mRNA properties, including AUG codon-accessibility and 5′ leader length have been proposed as potential determinants that affect where ribosomes initiate translation. To explore this issue, we performed studies using synthetic mRNAs with two in-frame AUG codons−both in excellent context. Open reading frames initiating at AUG1 and AUG2 encode large and small isoforms of a reporter protein, respectively. Translation of such an mRNA in COS-7 cells was shown to be 5′ cap-dependent and to occur efficiently from both AUG codons. AUG codon-accessibility was modified by using two different elements: an antisense locked nucleic acid oligonucleotide and an exon-junction complex. When either element was used to mask AUG1, the ratio of the proteins synthesized changed, favoring the smaller (AUG2-initiated) protein. In addition, we observed that increased leader length by itself changed the ratio of the proteins and favored initiation at AUG1. These observations demonstrate that initiation codon selection is affected by various factors, including AUG codon-accessibility and 5′ leader length, and is not necessarily determined by the order of AUG codons (5′→3′). The modulation of AUG codon accessibility may provide a powerful means of translation regulation in eukaryotic cells

    Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus

    Get PDF
    Endothelial glycocalyx perturbation contributes to increased vascular permeability. In the present study we set out to evaluate whether: (1) glycocalyx is perturbed in individuals with type 2 diabetes mellitus, and (2) oral glycocalyx precursor treatment improves glycocalyx properties. Male participants with type 2 diabetes (n = 10) and controls (n = 10) were evaluated before and after 2 months of sulodexide administration (200 mg/day). The glycocalyx dimension was estimated in two different vascular beds using sidestream dark field imaging and combined fluorescein/indocyanine green angiography for sublingual and retinal vessels, respectively. Transcapillary escape rate of albumin (TER(alb)) and hyaluronan catabolism were assessed as measures of vascular permeability. Both sublingual dimensions (0.64 [0.57-0.75] μm vs 0.78 [0.71-0.85] μm, p <0.05, medians [interquartile range]) and retinal glycocalyx dimensions (5.38 [4.88-6.59] μm vs 8.89 [4.74-11.84] μm, p <0.05) were reduced in the type 2 diabetes group compared with the controls whereas TER(alb) was increased (5.6 ± 2.3% vs 3.7 ± 1.7% in the controls, p <0.05). In line with these findings, markers of hyaluronan catabolism were increased with diabetes (hyaluronan 137 ± 29 vs 81 ± 8 ng/ml and hyaluronidase 78 ± 4 vs 67 ± 2 U/ml, both p <0.05). Sulodexide increased both the sublingual and retinal glycocalyx dimensions in participants with diabetes (to 0.93 [0.83-0.99] μm and to 5.88 [5.33-6.26] μm, respectively, p <0.05). In line, a trend towards TER(alb) normalisation (to 4.0 ± 2.3%) and decreases in plasma hyaluronidase (to 72 ± 2 U/ml, p <0.05) were observed in the diabetes group. Type 2 diabetes is associated with glycocalyx perturbation and increased vascular permeability, which are partially restored following sulodexide administration. Further studies are warranted to determine whether long-term treatment with sulodexide has a beneficial effect on cardiovascular risk. www.trialregister.nl NTR780/ http://isrctn.org ISRCTN82695186 An unrestricted Novartis Foundation for Cardiovascular Excellence grant (2006) to M. Nieuwdorp/E. S. G. Stroes, Dutch Heart Foundation (grant number 2005T037

    Antioxidant properties of MitoTEMPOL and its hydroxylamine

    Get PDF
    Piperidine nitroxides such as TEMPOL have been widely used as antioxidants in vitro and in vivo. MitoTEMPOL is a mitochondria-targeted derivative of TEMPOL designed to protect mitochondria from the oxidative damage that they accumulate, but once there is rapidly reduced to its hydroxylamine, MitoTEMPOL-H. As little is known about the antioxidant efficacy of hydroxylamines, this study has assessed the antioxidant activity of both MitoTEMPOL and MitoTEMPOL-H. The hydroxylamine was more effective at preventing lipid-peroxidation than MitoTEMPOL and decreased oxidative damage to mitochondrial DNA caused by menadione. In contrast to MitoTEMPOL, MitoTEMPOL-H has no superoxide dismutase activity and its antioxidant actions are likely to be mediated by hydrogen atom donation. Therefore, even though MitoTEMPOL is rapidly reduced to MitoTEMPOL-H in cells, it remains an effective antioxidant. Furthermore, as TEMPOL is also reduced to a hydroxylamine in vivo, many of its antioxidant effects may also be mediated by its hydroxylamine

    Polymorphism of SERPINE2 gene is associated with pulmonary emphysema in consecutive autopsy cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>SERPINA1</it>, <it>SERPINA3</it>, and <it>SERPINE2 </it>genes, which encode antiproteases, have been proposed to be susceptible genes for of chronic obstructive pulmonary disease (COPD) and related phenotypes. Whether they are associated with emphysema is not known.</p> <p>Methods</p> <p>Twelve previously reported single nucleotide polymorphisms (SNPs) in <it>SERPINA1 </it>(rs8004738, rs17751769, rs709932, rs11832, rs1303, rs28929474, and rs17580), <it>SERPINA3 </it>(rs4934, rs17473, and rs1800463), and <it>SERPINE2 </it>(rs840088 and rs975278) were genotyped in samples obtained from 1,335 consecutive autopsies of elderly Japanese people. The association between these SNPs and the severity of emphysema, as assessed using macroscopic scores, was determined.</p> <p>Results</p> <p>Emphysema of more than moderate degree was detected in 189 subjects (14.1%) and showed a significant gender difference (males, 20.5% and females, 7.0%; p < 0.0001). Among the 12 examined SNPs, only rs975278 in the <it>SERPINE2 </it>gene was positively associated with emphysema. Unlike the major alleles, homozygous minor alleles of rs975278 were associated with emphysema (odds ratio (OR) = 1.54; 95% confidence interval (CI) = 1.02-2.30; p = 0.037) and the association was very prominent in smokers (OR = 2.02; 95% CI = 1.29-3.15; p = 0.002).</p> <p>Conclusions</p> <p><it>SERPINE2 </it>may be a risk factor for the development of emphysema and its association with emphysema may be stronger in smokers.</p

    Loss of Sialic Acid Binding Domain Redirects Protein σ1 to Enhance M Cell-Directed Vaccination

    Get PDF
    Ovalbumin (OVA) genetically fused to protein sigma 1 (pσ1) results in tolerance to both OVA and pσ1. Pσ1 binds in a multi-step fashion, involving both protein- and carbohydrate-based receptors. To assess the relative pσ1 components responsible for inducing tolerance and the importance of its sialic binding domain (SABD) for immunization, modified OVA-pσ1, termed OVA-pσ1(short), was deleted of its SABD, but with its M cell targeting moiety intact, and was found to be immunostimulatory and enhanced CD4+ and CD8+ T cell proliferation. When used to nasally immunize mice given with and without cholera toxin (CT) adjuvant, elevated SIgA and serum IgG responses were induced, and OVA-pσ1(s) was more efficient for immunization than native OVA+CT. The immune antibodies (Abs) were derived from elevated Ab-forming cells in the upper respiratory tissues and submaxillary glands and were supported by mixed Th cell responses. Thus, these studies show that pσ1(s) can be fused to vaccines to effectively elicit improved SIgA responses
    corecore