1,477 research outputs found
Technical note: The effects of five different defaunation methods on biogeochemical properties of intertidal sediment
Various methods have been used to remove organisms from sediments to investigate structure and function of faunal assemblages in intertidal habitats. Nevertheless, little is known about how these treatments affect properties of the sediments themselves, although changing these properties may cause changes in the assemblages, independently of other hypotheses being tested. This study assesses the efficacy of defaunation and effect on selected biogeochemical properties of five different methods of defaunating soft muddy sediments in an estuary. The methods were removal and freezing of sediment, removal and oven-heating, freezing in situ with liquid N2, spraying with formalin and spraying with hydrogen peroxide. The first four of these methods have been used in previous studies, whilst the fifth was considered to be a potentially useful defaunator because it does not leave toxic residues. The first two methods required sediment to be brought back to the lab, disrupting the natural structure of the sediment; the last three were done in situ, with much less disturbance. Variables measured to assess effects of the treatments on the sediment were amount of water, grain size, total carbohydrate, suspension index (relative erosion rate), erosion threshold, chlorophyll a and b, colloidal carbohydrate, Fo (minimal fluorescence) and Fv/ Fm (photosynthetic yield). There were no significant effects of any treatment on the first four variables. For the others, effects of defaunation varied from treatment to treatment and with time after treatment. Generally, the greatest disturbance was to the microphytobenthos (MPB, measured by chlorophyll and fluorescence) and related variables. For most treatments, recovery was rapid, but the effects of formalin and H2O2 persisted for a few days. Effects on physical properties of the sediment were mostly minor and insignificant. Removal and freezing or heating, however, caused major changes to the sediments because of the disturbances involved. Choosing the appropriate method of defaunation is very important if interpretations are not to be confounded between the effects of defaunation per se and any effects of changes to other biota (such as microphytobenthos) and/or the properties of sediments caused by the method used to defaunate experimental areas
The impact of blocking natural peat pipes on water-table depth and water quality
No abstract available
On the nature of the short duration GRB 050906
The definitive version is available at www.blackwell-synergy.com. Copyright Blackwell Publishing DOI : 10.1111/j.1365-2966.2007.11953.xPeer reviewe
A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification
Assessing the potential of marine organisms to adapt genetically to increasing oceanic CO2 levels requires proxies such as heritability of fitness-related traits under ocean acidification (OA). We applied a quantitative genetic method to derive the first heritability estimate of survival under elevated CO2 conditions in a metazoan. Specifically, we reared offspring, selected from a wild coastal fish population (Atlantic silverside, Menidia menidia), at high CO2 conditions (~2300 μatm) from fertilization to 15 days posthatch, which significantly reduced survival compared to controls. Perished and surviving offspring were quantitatively sampled and genotyped along with their parents, using eight polymorphic microsatellite loci, to reconstruct a parent–offspring pedigree and estimate variance components. Genetically related individuals were phenotypically more similar (i.e., survived similarly long at elevated CO2 conditions) than unrelated individuals, which translated into a significantly nonzero heritability (0.20 ± 0.07). The contribution of maternal effects was surprisingly small (0.05 ± 0.04) and nonsignificant. Survival among replicates was positively correlated with genetic diversity, particularly with observed heterozygosity. We conclude that early life survival of M. menidia under high CO2 levels has a significant additive genetic component that could elicit an evolutionary response to OA, depending on the strength and direction of future selection
Recommended from our members
Integrated computer-aided working-fluid design and thermoeconomic ORC system optimisation
The successful commercialisation of organic Rankine cycle (ORC) systems across a range of power outputs and heat-source temperatures demands step-changes in both improved thermodynamic performance and reduced investment costs. The former can be achieved through high-performance components and optimised system architectures operating with novel working-fluids, whilst the latter requires careful component-technology selection, economies of scale, learning curves and a proper selection of materials and cycle configurations. In this context, thermoeconomic optimisation of the whole power-system should be completed aimed at maximising profitability. This paper couples the computer-aided molecular design (CAMD) of the working-fluid with ORC thermodynamic models, including recuperated and other alternative (e.g., partial evaporation or trilateral) cycles, and a thermoeconomic system assessment. The developed CAMD-ORC framework integrates an advanced molecular-based group-contribution equation of state, SAFT-γ Mie, with a thermodynamic description of the system, and is capable of simultaneously optimising the working-fluid structure, and the thermodynamic system. The advantage of the proposed CAMD-ORC methodology is that it removes subjective and pre-emptive screening criteria that would otherwise exist in conventional working-fluid selection studies. The framework is used to optimise hydrocarbon working-fluids for three different heat sources (150, 250 and 350 °C, each with mcp = 4.2 kW/K). In each case, the optimal combination of working-fluid and ORC system architecture is identified, and system investment costs are evaluated through component sizing models. It is observed that optimal working fluids that minimise the specific investment cost (SIC) are not the same as those that maximise power output. For the three heat sources the optimal working-fluids that minimise the SIC are isobutane, 2-pentene and 2-heptene, with SICs of 4.03, 2.22 and 1.84 £/W respectively
Negatively Charged Excitons and Photoluminescence in Asymmetric Quantum Well
We study photoluminescence (PL) of charged excitons () in narrow
asymmetric quantum wells in high magnetic fields B. The binding of all
states strongly depends on the separation of electron and hole layers.
The most sensitive is the ``bright'' singlet, whose binding energy decreases
quickly with increasing even at relatively small B. As a result, the
value of B at which the singlet--triplet crossing occurs in the spectrum
also depends on and decreases from 35 T in a symmetric 10 nm GaAs well
to 16 T for nm. Since the critical values of at which
different states unbind are surprisingly small compared to the well
width, the observation of strongly bound states in an experimental PL
spectrum implies virtually no layer displacement in the sample. This casts
doubt on the interpretation of PL spectra of heterojunctions in terms of
recombination
The Uncertainty in Newton's Constant and Precision Predictions of the Primordial Helium Abundance
The current uncertainty in Newton's constant, G_N, is of the order of 0.15%.
For values of the baryon to photon ratio consistent with both cosmic microwave
background observations and the primordial deuterium abundance, this
uncertainty in G_N corresponds to an uncertainty in the primordial 4He mass
fraction, Y_P, of +-1.3 x 10^{-4}. This uncertainty in Y_P is comparable to the
effect from the current uncertainty in the neutron lifetime, which is often
treated as the dominant uncertainty in calculations of Y_P. Recent measurements
of G_N seem to be converging within a smaller range; a reduction in the
estimated error on G_N by a factor of 10 would essentially eliminate it as a
source of uncertainty in the calculation of the primordial 4He abundance.Comment: 3 pages, no figures, fixed typos, to appear in Phys. Rev.
Being relevant: Practical guidance for early career researchers interested in solving conservation problems
AbstractIn a human-altered world where biodiversity is in decline and conservation problems abound, there is a dire need to ensure that the next generation of conservation scientists have the knowledge, skills, and training to address these problems. So called “early career researchers” (ECRs) in conservation science have many challenges before them and it is clear that the status quo must change to bridge the knowledge–action divide. Here we identify thirteen practical strategies that ECRs can employ to become more relevant. In this context, “relevance” refers to the ability to contribute to solving conservation problems through engagement with practitioners, policy makers, and stakeholders. Conservation and career strategies outlined in this article include the following: thinking ‘big picture’ during conservation projects; embracing various forms of knowledge; maintaining positive relationships with locals familiar with the conservation issue; accepting failure as a viable (and potentially valuable) outcome; daring to be creative; embracing citizen science; incorporating interdisciplinarity; promoting and practicing pro-environmental behaviours; understanding financial aspects of conservation; forming collaboration from the onset of a project; accepting the limits of technology; ongoing and effective networking; and finally, maintaining a positive outlook by focusing on and sharing conservation success stories. These strategies move beyond the generic and highlight the importance of continuing to have an open mind throughout the entire conservation process, from establishing one’s self as an asset to embracing collaboration and interdisciplinary work, and striving to push for professional and personal connections that strengthen personal career objectives
The Biology Instrument for the Viking Mars Mission
Two Viking spacecraft have successfully soft landed on the surface of Mars. Each carries, along with other scientific instruments, one biology laboratory with three different experiments designed to search for evidence of living microorganisms in material sampled from the Martian surface. This 15.5-kg biology instrument which occupies a volume of almost 28.3 dm3 is the first to carry out an in situ search for extraterrestrial life on a planet. The three experiments are called the pyrolytic release, labeled release, and gas exchange. The pyrolytic release experiment has the capability to measure the fixation of carbon dioxide or carbon monoxide into organic matter. The labeled release experiment detects metabolic processes by monitoring the production of volatile carbon compounds from a radioactively labeled nutrient mixture. The gas exchange experiment monitors the gas changes in the head space above a soil sample which is either incubated in a humid environment or supplied with a rich organic nutrient solution. Each experiment can analyze a soil sample as it is received from the surface or, as a control, analyze a soil which has been heated to above 160C. Each instrument has the capability to receive four different soils dug from the Martian surface and perform a number of analysis cycles depending on the particular experiment. This paper describes in detail the design and operation of the three experiments and the supporting subsystems
- …