103 research outputs found

    Results of Gem III Tethered Tests

    Get PDF

    The Octave (Birmingham - Sheffield Hallam) automated pipeline for extracting oscillation parameters of solar-like main-sequence stars

    Full text link
    The number of main-sequence stars for which we can observe solar-like oscillations is expected to increase considerably with the short-cadence high-precision photometric observations from the NASA Kepler satellite. Because of this increase in number of stars, automated tools are needed to analyse these data in a reasonable amount of time. In the framework of the asteroFLAG consortium, we present an automated pipeline which extracts frequencies and other parameters of solar-like oscillations in main-sequence and subgiant stars. The pipeline uses only the timeseries data as input and does not require any other input information. Tests on 353 artificial stars reveal that we can obtain accurate frequencies and oscillation parameters for about three quarters of the stars. We conclude that our methods are well suited for the analysis of main-sequence stars, which show mainly p-mode oscillations.Comment: accepted by MNRA

    Modelling the Autocovariance of the Power Spectrum of a Solar-Type Oscillator

    Full text link
    Asteroseismology is able to conduct studies on the interiors of solar-type stars from the analysis of stellar acoustic spectra. However, such an analysis process often has to rely upon subjective choices made throughout. A recurring problem is to determine whether a signal in the acoustic spectrum originates from a radial or a dipolar oscillation mode. In order to overcome this problem, we present a procedure for modelling and fitting the autocovariance of the power spectrum which can be used to obtain global seismic parameters of solar-type stars, doing so in an automated fashion without the need to make subjective choices. From the set of retrievable global seismic parameters we emphasize the mean small frequency separation and, depending on the intrinsic characteristics of the power spectrum, the mean rotational frequency splitting. Since this procedure is automated, it can serve as a useful tool in the analysis of the more than one thousand solar-type stars expected to be observed as part of the Kepler Asteroseismic Investigation (KAI). We apply the aforementioned procedure to simulations of the Sun. Assuming different apparent magnitudes, we address the issues of how accurately and how precisely we can retrieve the several global seismic parameters were the Sun to be observed as part of the KAI.Comment: 10 pages, 8 figures, accepted for publication in MNRA

    Mode visibilities in radial velocity and photometric Sun-as-a-star helioseismic observations

    Full text link
    We analyze more than 5000 days of high-quality Sun-as-a-star, radial velocity GOLF and photometric VIRGO/SPM helioseismic observations to extract precise estimates of the visibilities of the low-degree p modes and the m-height ratios of the l=2 and 3 multiplets in the solar acoustic spectrum. The mode visibilities are shown to be larger during the GOLF red-wing configuration than during the blue-wing configuration, and to decrease as the wavelength of the VIRGO/SPM channels increases. We also show that the mode visibilities are independent of the solar activity cycle and remain constant overall with time, but that nevertheless they follow short-term fluctuations on a time scale of a few months. The l=1 mode visibility also increases significantly toward the end of the year 1999. Comparisons with theoretical predictions are provided. Even though there is qualitative agreement, some significant discrepancies appear, especially for the l=3 modes. The limb darkening alone cannot explain the relative visibilities of modes. These precise estimates should be used as references for the extraction of the p-mode parameters for any future investigation using the GOLF and VIRGO/SPM observations.Comment: Accepted for publication in Astronomy and Astrophysics (2011, in press

    Global asteroseismic properties of solar-like oscillations observed by Kepler : A comparison of complementary analysis methods

    Full text link
    We present the asteroseismic analysis of 1948 F-, G- and K-type main-sequence and subgiant stars observed by the NASA {\em Kepler Mission}. We detect and characterise solar-like oscillations in 642 of these stars. This represents the largest cohort of main-sequence and subgiant solar-like oscillators observed to date. The photometric observations are analysed using the methods developed by nine independent research teams. The results are combined to validate the determined global asteroseismic parameters and calculate the relative precision by which the parameters can be obtained. We correlate the relative number of detected solar-like oscillators with stellar parameters from the {\em Kepler Input Catalog} and find a deficiency for stars with effective temperatures in the range 5300â‰ČTeffâ‰Č57005300 \lesssim T_\mathrm{eff} \lesssim 5700\,K and a drop-off in detected oscillations in stars approaching the red edge of the classical instability strip. We compare the power-law relationships between the frequency of peak power, Îœmax\nu_\mathrm{max}, the mean large frequency separation, ΔΜ\Delta\nu, and the maximum mode amplitude, AmaxA_\mathrm{max}, and show that there are significant method-dependent differences in the results obtained. This illustrates the need for multiple complementary analysis methods to be used to assess the robustness and reproducibility of results derived from global asteroseismic parameters.Comment: 14 pages, 9 figures, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Modeling Kepler Observations of Solar-like Oscillations in the Red-giant Star HD 186355

    Full text link
    We have analysed oscillations of the red giant star HD 186355 observed by the NASA Kepler satellite. The data consist of the first five quarters of science operations of Kepler, which cover about 13 months. The high-precision time-series data allow us to accurately extract the oscillation frequencies from the power spectrum. We find the frequency of the maximum oscillation power, {\nu}_max, and the mean large frequency separation, {\Delta}{\nu}, are around 106 and 9.4 {\mu}Hz respectively. A regular pattern of radial and non-radial oscillation modes is identified by stacking the power spectra in an echelle diagram. We use the scaling relations of {\Delta}{\nu} and {\nu}_max to estimate the preliminary asteroseismic mass, which is confirmed with the modelling result (M = 1.45 \pm 0.05 M_sun) using the Yale Rotating stellar Evolution Code (YREC7). In addition, we constrain the effective temperature, luminosity and radius from comparisons between observational constraints and models. A number of mixed l = 1 modes are also detected and taken into account in our model comparisons. We find a mean observational period spacing for these mixed modes of about 58 s, suggesting that this red giant branch star is in the shell hydrogen-burning phase.Comment: 26 pages, 5 figures and 2 table

    Solar-like oscillations in KIC11395018 and KIC11234888 from 8 months of Kepler data

    Full text link
    We analyze the photometric short-cadence data obtained with the Kepler Mission during the first eight months of observations of two solar-type stars of spectral types G and F: KIC 11395018 and KIC 11234888 respectively, the latter having a lower signal-to-noise ratio compared to the former. We estimate global parameters of the acoustic (p) modes such as the average large and small frequency separations, the frequency of the maximum of the p-mode envelope and the average linewidth of the acoustic modes. We were able to identify and to measure 22 p-mode frequencies for the first star and 16 for the second one even though the signal-to-noise ratios of these stars are rather low. We also derive some information about the stellar rotation periods from the analyses of the low-frequency parts of the power spectral densities. A model-independent estimation of the mean density, mass and radius are obtained using the scaling laws. We emphasize the importance of continued observations for the stars with low signal-to-noise ratio for an improved characterization of the oscillation modes. Our results offer a preview of what will be possible for many stars with the long data sets obtained during the remainder of the mission.Comment: 39 pages, 9 figures. Accepted for publication in Ap

    Predicting the detectability of oscillations in solar-type stars observed by Kepler

    Full text link
    Asteroseismology of solar-type stars has an important part to play in the exoplanet program of the NASA Kepler Mission. Precise and accurate inferences on the stellar properties that are made possible by the seismic data allow very tight constraints to be placed on the exoplanetary systems. Here, we outline how to make an estimate of the detectability of solar-like oscillations in any given Kepler target, using rough estimates of the temperature and radius, and the Kepler apparent magnitude.Comment: 21 pages, 6 figures, accepted for publication Astrophysical Journa

    Sensitivity of the g-mode frequencies to pulsation codes and their parameters

    Full text link
    From the recent work of the Evolution and Seismic Tools Activity (ESTA, Lebreton et al. 2006; Monteiro et al. 2008), whose Task 2 is devoted to compare pulsational frequencies computed using most of the pulsational codes available in the asteroseismic community, the dependence of the theoretical frequencies with non-physical choices is now quite well fixed. To ensure that the accuracy of the computed frequencies is of the same order of magnitude or better than the observational errors, some requirements in the equilibrium models and the numerical resolutions of the pulsational equations must be followed. In particular, we have verified the numerical accuracy obtained with the Saclay seismic model, which is used to study the solar g-mode region (60 to 140Ό\muHz). We have compared the results coming from the Aarhus adiabatic pulsation code (ADIPLS), with the frequencies computed with the Granada Code (GraCo) taking into account several possible choices. We have concluded that the present equilibrium models and the use of the Richardson extrapolation ensure an accuracy of the order of 0.01ΌHz0.01 \mu Hz in the determination of the frequencies, which is quite enough for our purposes.Comment: 10 pages, 5 figures, accepted in Solar Physic

    A uniform asteroseismic analysis of 22 solar-type stars observed by Kepler

    Full text link
    Asteroseismology with the Kepler space telescope is providing not only an improved characterization of exoplanets and their host stars, but also a new window on stellar structure and evolution for the large sample of solar-type stars in the field. We perform a uniform analysis of 22 of the brightest asteroseismic targets with the highest signal-to-noise ratio observed for 1 month each during the first year of the mission, and we quantify the precision and relative accuracy of asteroseismic determinations of the stellar radius, mass, and age that are possible using various methods. We present the properties of each star in the sample derived from an automated analysis of the individual oscillation frequencies and other observational constraints using the Asteroseismic Modeling Portal (AMP), and we compare them to the results of model-grid-based methods that fit the global oscillation properties. We find that fitting the individual frequencies typically yields asteroseismic radii and masses to \sim1% precision, and ages to \sim2.5% precision (respectively 2, 5, and 8 times better than fitting the global oscillation properties). The absolute level of agreement between the results from different approaches is also encouraging, with model-grid-based methods yielding slightly smaller estimates of the radius and mass and slightly older values for the stellar age relative to AMP, which computes a large number of dedicated models for each star. The sample of targets for which this type of analysis is possible will grow as longer data sets are obtained during the remainder of the mission.Comment: 13 pages, 5 figures in the main text, 22 figures in Appendix. Accepted for publication in Ap
    • 

    corecore