52 research outputs found

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Search for scalar leptoquarks in the acoplanar jet topology in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    A search for leptoquarks has been performed in 310 pb-1 of data from ppbar collisions at a center-of-mass energy of 1.96 TeV, collected by the D0 detector at the Fermilab Tevatron Collider. The topology analyzed consists of acoplanar jets with missing transverse energy. The data show good agreement with standard model expectations, and a lower mass limit of 136 GeV has been set at the 95% C.L. for a scalar leptoquark decaying exclusively into a quark and a neutrino.Comment: Minor changes in v2 to match the published version, 8 pages, 5 figure

    Measurement of B(t->Wb)/B(t->Wq) at sqrt(s) = 1.96 TeV

    Full text link
    We present the measurement of R = B(t->Wb)/B(t->Wq) in ppbar collisions at sqrt(s) = 1.96 TeV, using 230 pb-1 of data collected by the DO experiment at the Fermilab Tevatron Collider. We fit simultaneously R and the number of selected top quark pairs (ttbar), to the number of identified b-quark jets in events with one electron or one muon, three or more jets, and high transverse energy imbalance. To improve sensitivity, kinematical properties of events with no identified b-quark jets are included in the fit. We measure R = 1.03 +0.19 -0.17 (stat+syst), in good agreement with the standard model. We set lower limits of R > 0.61 and |V_tb| > 0.78 at 95% confidence level.Comment: 7 pages, 1 figure submitted to Phys. Rev. Let

    Search for the Standard Model Higgs Boson in the ZH --> neutrino-neutrino-b-b channel

    Full text link
    We report a search for the standard model (SM) Higgs boson based on data collected by the D0 experiment at the Fermilab Tevatron Collider, corresponding to an integrated luminosity of 260 pb^-1. We study events with missing transverse energy and two acoplanar b-jets, which provide sensitivity to the ZH production cross section in the neutrino-neutrino-b-b channel and to WH production, when the lepton from the W -> lepton+neutrino decay is undetected. The data are consistent with the SM background expectation, and we set 95% C.L. upper limits on sigma(p p-bar -> ZH/WH) x B(H -> b b-bar) from 3.4/8.3 to 2.5/6.3 pb, for Higgs masses between 105 and 135 GeV.Comment: submitted to Phys. Rev. Letter
    • 

    corecore