1,078 research outputs found

    Central Mass Concentration and Bar Dissolution in Nearby Spiral Galaxies

    Get PDF
    We use data from the BIMA Survey of Nearby Galaxies (SONG) to investigate the relationship between ellipticity and central mass concentration in barred spirals. Existing simulations predict that bar ellipticity decreases as inflowing mass driven by the bar accumulates in the central regions, ultimately destroying the bar. Using the ratio of the bulge mass to the mass within the bar radius as an estimate of the central mass concentration, we obtain dynamical mass estimates from SONG CO 1-0 rotation curve data. We find an inverse correlation between bar ellipticity and central mass concentration, consistent with simulations of bar dissolution.Comment: 10 pages, 2 figures and 2 tables, accepted for publication in the Astrophysical Journa

    The Distribution of Bar and Spiral Strengths in Disk Galaxies

    Full text link
    The distribution of bar strengths in disk galaxies is a fundamental property of the galaxy population that has only begun to be explored. We have applied the bar/spiral separation method of Buta, Block, and Knapen to derive the distribution of maximum relative gravitational bar torques, Q_b, for 147 spiral galaxies in the statistically well-defined Ohio State University Bright Galaxy Survey (OSUBGS) sample. Our goal is to examine the properties of bars as independently as possible of their associated spirals. We find that the distribution of bar strength declines smoothly with increasing Q_b, with more than 40% of the sample having Q_b <= 0.1. In the context of recurrent bar formation, this suggests that strongly-barred states are relatively short-lived compared to weakly-barred or non-barred states. We do not find compelling evidence for a bimodal distribution of bar strengths. Instead, the distribution is fairly smooth in the range 0.0 <= Q_b < 0.8. Our analysis also provides a first look at spiral strengths Q_s in the OSU sample, based on the same torque indicator. We are able to verify a possible weak correlation between Q_s and Q_b, in the sense that galaxies with the strongest bars tend also to have strong spirals.Comment: Accepted for publication in the Astronomical Journal, August 2005 issue (LaTex, 23 pages + 11 figures, uses aastex.cls

    Towards the Secondary Bar: Gas Morphology and Dynamics in NGC 4303

    Get PDF
    The bulk of the molecular line emission in the double barred galaxy NGC4303 as observed in its CO(1-0) line with the OVRO mm-interferometer comes from two straight gas lanes which run north-south along the leading sides of the large-scale primary bar. Inside a radius of ~ 400 pc the molecular gas forms a spiral pattern which, for the northern arm, can be traced to the nucleus. Comparison of the OVRO and archival HST data with dynamical models of gas flow in the inner kiloparsec of single- and double-barred galaxies shows that the observed global properties of the molecular gas are in agreement with models for the gas flow in a strong, large-scale bar, and the two-arm spiral structure seen in CO in the inner kiloparsec can already be explained by a density wave initiated by the potential of that bar. Only a weak correlation between the molecular gas distribution and the extinction seen in the HST V-H map is found in the inner 400 pc of NGC4303: The innermost part of one arm of the nuclear CO spiral correlates with a weak dust filament in the color map, while the overall dust distribution follows a ring or single-arm spiral pattern well correlated with the UV continuum. This complicated nuclear geometry of the stellar and gaseous components allows for two scenarios: (A) A self-gravitating m=1 mode is present forming the spiral structure seen in the UV continuum. In this case the gas kinematics would be unaffected by the small (~ 4'') inner bar. (B) The UV continuum traces a complete ring which is heavily extincted north of the nucleus. Such a ring forms in hydrodynamic models of double bars, but the models cannot account for the UV emission observed on the leading side of the inner bar. (abridged)Comment: 47 pages, 14 figures, accepted for publication in Ap

    The ultraviolet visibility and quantitative morphology of galactic disks at low and high redshift

    Get PDF
    We used ultraviolet (200 nm) images of the local spiral galaxies M33, M51, M81, M100, M101 to compute morphological parameters of galactic disks at this wavelength : half-light radius rhlr_{hl}, surface brightness distributions, asymmetries (AA) and concentrations (CAC_A). The visibility and the evolution of the morphological parameters are studied as a function of the redshift. The main results are : local spiral galaxies would be hardly observed and classified if projected at high redshifts (z ≄\ge 1) unless a strong luminosity evolution is assumed. Consequently, the non-detection of large galactic disks cannot be used without caution as a constraint on the evolution of galatic disks. Spiral galaxies observed in ultraviolet appear more irregular since the contribution from the young stellar population becomes predominent. When these galaxies are put in a (log AA vs. log CAC_A) diagram, they move to the irregul ar sector defined at visible wavelengths. Moreover, the log AA parameter is degenerate and cannot be used for an efficient classification of morphological ultraviolet types. The analysis of high redshift galaxies cannot be carried out in a reliable way so far and a multi-wavelength approach is required if one does not want to misinterpret the data.Comment: 12 pages, accepted for publication in A&A on 15 January 200

    Globular cluster systems in elliptical galaxies of Coma

    Get PDF
    Globular cluster systems of 17 elliptical galaxies have been studied in the Coma cluster of galaxies. Surface-brightness fluctuations have been used to determine total populations of globular clusters and specific frequency (S_N) has been evaluated for each individual galaxy. Enormous differences in S_N between similar galaxies are found. In particular, S_N results vary by an order of magnitude from galaxy to galaxy. Extreme cases are the following: a) at the lower end of the range, NGC 4673 has S_N = 1.0 +/- 0.4, a surprising value for an elliptical galaxy, but typical for spiral and irregular galaxies; b) at the upper extreme, MCG +5 -31 -063 has S_N = 13.0 +/- 4.2 and IC 4051 S_N = 12.7 +/- 3.2, and are more likely to belong to supergiant cD galaxies than to "normal" elliptical galaxies. Furthermore, NGC 4874, the central supergiant cD galaxy of the Coma cluster, also exhibits a relatively high specific frequency (S_N = 9.0 +/- 2.2). The other galaxies studied have S_N in the range [2, 7], the mean value being S_N = 5.1. No single scenario seems to account for the observed specific frequencies, so the history of each galaxy must be deduced individually by suitably combining the different models (in situ, mergers, and accretions). The possibility that Coma is formed by several subgroups is also considered. If only the galaxies of the main subgroup defined by Gurzadyan & Mazure (2001) are used, a trend in S_N arises in the sense of S_N being bigger in higher density regions. This result needs further confirmation.Comment: 43 pages including 12 .ps figures, accepted for publication in Ap

    A Dust-Penetrated Classification Scheme for Bars as Inferred from their Gravitational Force Fields

    Get PDF
    The division of galaxies into ``barred'' (SB) and ``normal'' (S) spirals is a fundamental aspect of the Hubble galaxy classification system. This ``tuning fork'' view was revised by de Vaucouleurs, whose classification volume recognized apparent ``bar strength'' (SA, SAB, SB) as a continuous property of galaxies called the ``family''. However, the SA, SAB, and SB families are purely visual judgments that can have little bearing on the actual bar strength in a given galaxy. Until very recently, published bar judgments were based exclusively on blue light images, where internal extinction or star formation can either mask a bar completely or give the false impression of a bar in a nonbarred galaxy. Near-infrared camera arrays, which principally trace the old stellar populations in both normal and barred galaxies, now facilitate a quantification of bar strength in terms of their gravitational potentials and force fields. In this paper, we show that the maximum value, Qb, of the ratio of the tangential force to the mean radial force is a quantitative measure of the strength of a bar. Qb does not measure bar ellipticity or bar shape, but rather depends on the actual forcing due to the bar embedded in its disk. We show that a wide range of true bar strengths characterizes the category ``SB'', while de Vaucouleurs category ``SAB'' corresponds to a much narrower range of bar strengths. We present Qb values for 36 galaxies, and we incorporate our bar classes into a dust-penetrated classification system for spiral galaxies.Comment: Accepted for publication in the Astrophysical Journal (LaTex, 30 pages + 3 figures); Figs. 1 and 3 are in color and are also available at http://bama.ua.edu/~rbuta/bars
    • 

    corecore