The division of galaxies into ``barred'' (SB) and ``normal'' (S) spirals is a
fundamental aspect of the Hubble galaxy classification system. This ``tuning
fork'' view was revised by de Vaucouleurs, whose classification volume
recognized apparent ``bar strength'' (SA, SAB, SB) as a continuous property of
galaxies called the ``family''. However, the SA, SAB, and SB families are
purely visual judgments that can have little bearing on the actual bar strength
in a given galaxy. Until very recently, published bar judgments were based
exclusively on blue light images, where internal extinction or star formation
can either mask a bar completely or give the false impression of a bar in a
nonbarred galaxy. Near-infrared camera arrays, which principally trace the old
stellar populations in both normal and barred galaxies, now facilitate a
quantification of bar strength in terms of their gravitational potentials and
force fields. In this paper, we show that the maximum value, Qb, of the ratio
of the tangential force to the mean radial force is a quantitative measure of
the strength of a bar. Qb does not measure bar ellipticity or bar shape, but
rather depends on the actual forcing due to the bar embedded in its disk. We
show that a wide range of true bar strengths characterizes the category ``SB'',
while de Vaucouleurs category ``SAB'' corresponds to a much narrower range of
bar strengths. We present Qb values for 36 galaxies, and we incorporate our bar
classes into a dust-penetrated classification system for spiral galaxies.Comment: Accepted for publication in the Astrophysical Journal (LaTex, 30
pages + 3 figures); Figs. 1 and 3 are in color and are also available at
http://bama.ua.edu/~rbuta/bars