8 research outputs found
Encoding Enhanced Complex CNN for Accurate and Highly Accelerated MRI
Magnetic resonance imaging (MRI) using hyperpolarized noble gases provides a
way to visualize the structure and function of human lung, but the long imaging
time limits its broad research and clinical applications. Deep learning has
demonstrated great potential for accelerating MRI by reconstructing images from
undersampled data. However, most existing deep conventional neural networks
(CNN) directly apply square convolution to k-space data without considering the
inherent properties of k-space sampling, limiting k-space learning efficiency
and image reconstruction quality. In this work, we propose an encoding enhanced
(EN2) complex CNN for highly undersampled pulmonary MRI reconstruction. EN2
employs convolution along either the frequency or phase-encoding direction,
resembling the mechanisms of k-space sampling, to maximize the utilization of
the encoding correlation and integrity within a row or column of k-space. We
also employ complex convolution to learn rich representations from the complex
k-space data. In addition, we develop a feature-strengthened modularized unit
to further boost the reconstruction performance. Experiments demonstrate that
our approach can accurately reconstruct hyperpolarized 129Xe and 1H lung MRI
from 6-fold undersampled k-space data and provide lung function measurements
with minimal biases compared with fully-sampled image. These results
demonstrate the effectiveness of the proposed algorithmic components and
indicate that the proposed approach could be used for accelerated pulmonary MRI
in research and clinical lung disease patient care
Speciation and migration of 129I in soil profiles
A rapid and simple method was developed for speciation analysis of I-129 in seawater by selective coprecipitation of carrier-free iodide and accelerator mass spectrometry (AMS) measurement of I-129. Iodide was separated from seawater and other species of iodine by coprecipitation of AgI with Ag2SO3, AgCl, and AgBr by addition of only 100 mg/L Ag+ and 0.3 mmol/L NaHSO3 at pH 4.2-5.5. The separation efficiency of iodide was more than 95%, and crossover between (IO3-)-I-129 and I-129(-) fractions is less than 3%. Iodate and total inorganic iodine were converted to iodide by use of NaHSO3 at pH 1-2 and then separated by the same method as for iodide. Ag2SO3 in the coprecipitate was removed by washing with 3 mol/L HNO3 and the excess AgCl and AgBr was removed by use of diluted NH3, and finally a 1-3 mg precipitate was obtained for AMS measurement of I-129. The recovery of iodine species in the entire procedure is higher than 70%. Six seawater samples collected from the Norwegian Sea were analyzed by this method as well as a conventional anion-exchange chromatographic method; the results from the two methods show no significant difference (p = 0.05). Because only one separation step and fewer chemicals are involved in the procedure, this method is suitable for operation on board sampling vessels, as it avoids the transport of samples to the laboratory and storage for a longer time before analysis, therefore significantly improving the analytical capacity and reliability of speciation analysis of I-129. This improvement can stimulate oceanographic tracer studies of I-129.</p