582 research outputs found

    Studying edge geometry in transiently turbulent shear flows

    Full text link
    In linearly stable shear flows at moderate Re, turbulence spontaneously decays despite the existence of a codimension-one manifold, termed the edge of chaos, which separates decaying perturbations from those triggering turbulence. We statistically analyse the decay in plane Couette flow, quantify the breaking of self-sustaining feedback loops and demonstrate the existence of a whole continuum of possible decay paths. Drawing parallels with low-dimensional models and monitoring the location of the edge relative to decaying trajectories we provide evidence, that the edge of chaos separates state space not globally. It is instead wrapped around the turbulence generating structures and not an independent dynamical structure but part of the chaotic saddle. Thereby, decaying trajectories need not cross the edge, but circumnavigate it while unwrapping from the turbulent saddle.Comment: 11 pages, 6 figure

    TRAPPIST: a robotic telescope dedicated to the study of planetary systems

    Full text link
    We present here a new robotic telescope called TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope). Equipped with a high-quality CCD camera mounted on a 0.6 meter light weight optical tube, TRAPPIST has been installed in April 2010 at the ESO La Silla Observatory (Chile), and is now beginning its scientific program. The science goal of TRAPPIST is the study of planetary systems through two approaches: the detection and study of exoplanets, and the study of comets. We describe here the objectives of the project, the hardware, and we present some of the first results obtained during the commissioning phase.Comment: To appear in Detection and Dynamics of Transiting Exoplanets, Proceedings of Haute Provence Observatory Colloquium (23-27 August 2010), eds. F. Bouchy, R.F. Diaz & C.Moutou, Platypus press 201

    Genesis of Streamwise-Localized Solutions from Globally Periodic Traveling Waves in Pipe Flow

    Get PDF
    The aim in the dynamical systems approach to transitional turbulence is to construct a scaffold in phase space for the dynamics using simple invariant sets (exact solutions) and their stable and unstable manifolds. In large (realistic) domains where turbulence can coexist with laminar flow, this requires identifying exact localized solutions. In wall-bounded shear flows, the first of these has recently been found in pipe flow, but questions remain as to how they are connected to the many known streamwise-periodic solutions. Here we demonstrate that the origin of the first localized solution is in a modulational symmetry-breaking Hopf bifurcation from a known global traveling wave that has twofold rotational symmetry about the pipe axis. Similar behavior is found for a global wave of threefold rotational symmetry, this time leading to two localized relative periodic orbits. The clear implication is that many global solutions should be expected to lead to more realistic localized counterparts through such bifurcations, which provides a constructive route for their generatio

    COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses IX. Time delays, lens dynamics and baryonic fraction in HE 0435-1223

    Full text link
    We present accurate time delays for the quadruply imaged quasar HE 0435-1223. The delays were measured from 575 independent photometric points obtained in the R-band between January 2004 and March 2010. With seven years of data, we clearly show that quasar image A is affected by strong microlensing variations and that the time delays are best expressed relative to quasar image B. We measured Delta_t(BC) = 7.8+/-0.8 days, Delta_t(BD) = -6.5+/-0.7 days and Delta_t_CD = -14.3+/-0.8 days. We spacially deconvolved HST NICMOS2 F160W images to derive accurate astrometry of the quasar images and to infer the light profile of the lensing galaxy. We combined these images with a stellar population fitting of a deep VLT spectrum of the lensing galaxy to estimate the baryonic fraction, fbf_b, in the Einstein radius. We measured f_b = 0.65+0.13-0.10 if the lensing galaxy has a Salpeter IMF and f_b = 0.45+0.04-0.07 if it has a Kroupa IMF. The spectrum also allowed us to estimate the velocity dispersion of the lensing galaxy, sigma_ap = 222+/-34 km/s. We used f_b and sigma_ap to constrain an analytical model of the lensing galaxy composed of an Hernquist plus generalized NFW profile. We solve the Jeans equations numerically for the model and explored the parameter space under the additional requirement that the model must predict the correct astrometry for the quasar images. Given the current error bars on f_b and sigma_ap, we did not constrain H0 yet with high accuracy, i.e., we found a broad range of models with chi^2 < 1. However, narrowing this range is possible, provided a better velocity dispersion measurement becomes available. In addition, increasing the depth of the current HST imaging data of HE 0435-1223 will allow us to combine our constraints with lens reconstruction techniques that make use of the full Einstein ring that is visible in this object.Comment: 12 pages, 10 figures, final version accepted for publication by A&

    A deconvolution-based algorithm for crowded field photometry with unknown Point Spread Function

    Get PDF
    A new method is presented for determining the Point Spread Function (PSF) of images that lack bright and isolated stars. It is based on the same principles as the MCS (Magain, Courbin, Sohy, 1998) image deconvolution algorithm. It uses the information contained in all stellar images to achieve the double task of reconstructing the PSFs for single or multiple exposures of the same field and to extract the photometry of all point sources in the field of view. The use of the full information available allows to construct an accurate PSF. The possibility to simultaneously consider several exposures makes it very well suited to the measurement of the light curves of blended point sources from data that would be very difficult or even impossible to analyse with traditional PSF fitting techniques. The potential of the method for the analysis of ground-based and space-based data is tested on artificial images and illustrated by several examples, including HST/NICMOS images of a lensed quasar and VLT/ISAAC images of a faint blended Mira star in the halo of the giant elliptical galaxy NGC5128 (Cen A).Comment: Institutes: (1) Institut d'Astrophysique et de Geophysique, Universite de Liege, allee du 6 Aout 17, B-4000 Liege, Belgium; (2) Ecole Polytechnique Federale de Lausanne (EPFL), Laboratoire d'Astrophysique, Observatoire, CH-1290 Sauverny, Switzerland; (3) Observatoire de Geneve, 51 Chemin des Maillettes, CH-1290 Sauverny, Switzerland. 8 pages, 8 figures. Accepted for publication in A&

    Dissociative attachment in HCl, DCl, and F2

    Get PDF
    Resonant scattering models, using nonlocal decay widths, are developed for dissociative attachment of slow electrons to diatomic molecules. Cross sections are obtained for HCl and DCl in several initial rotational and vibrational states, and the dependence of the average attachment cross section upon the rotational and vibrational temperature is examined. For F_2 the cross section for ground state molecules agrees well with experiment above 0.2 eV but shows no zero energy peak. The attachment cross section is higher for vibrationally excited molecules, but the enhancement is much less than that found in H_2 and HCl

    ARQ-197, a small-molecule inhibitor of c-Met, reduces tumour burden and prevents myeloma-induced bone disease in vivo

    Get PDF
    The receptor tyrosine kinase c-Met, its ligand HGF, and components of the downstream signalling pathway, have all been implicated in the pathogenesis of myeloma, both as modulators of plasma cell proliferation and as agents driving osteoclast differentiation and osteoblast inhibition thus, all these contribute substantially to the bone destruction typically caused by myeloma. Patients with elevated levels of HGF have a poor prognosis, therefore, targeting these entities in such patients may be of substantial benefit. We hypothesized that ARQ-197 (Tivantinib), a small molecule c-Met inhibitor, would reduce myeloma cell growth and prevent myeloma-associated bone disease in a murine model. In vitro we assessed the effects of ARQ-197 on myeloma cell proliferation, cytotoxicity and c-Met protein expression in human myeloma cell lines. In vivo we injected NOD/SCID-γ mice with PBS (non-tumour bearing) or JJN3 cells and treated them with either ARQ-197 or vehicle. In vitro exposure of JJN3, U266 or NCI-H929 cells to ARQ-197 resulted in a significant inhibition of cell proliferation and an induction of cell death by necrosis, probably caused by significantly reduced levels of phosphorylated c-Met. In vivo ARQ-197 treatment of JJN3 tumour-bearing mice resulted in a significant reduction in tumour burden, tumour cell proliferation, bone lesion number, trabecular bone loss and prevented significant decreases in the bone formation rate on the cortico-endosteal bone surface compared to the vehicle group. However, no significant differences on bone parameters were observed in non-tumour mice treated with ARQ-197 compared to vehicle, implying that in tumour-bearing mice the effects of ARQ-197 on bone cells was indirect. In summary, these res ults suggest that ARQ-197 could be a promising therapeutic in myeloma patients, leading to both a reduction in tumour burden and an inhibition of myeloma-induced bone disease

    The use of oncolytic viruses in the treatment of multiple myeloma

    Get PDF
    Multiple myeloma accounts for 1% of all new cancers worldwide. It is the second most common haematological malignancy and has a low five-year survival rate (53.2%). Myeloma remains an incurable disease and is caused by the growth of malignant plasma cells in the bone marrow. Current anti-myeloma therapies (conventional chemotherapies, immunomodulatory drugs i.e., thalidomide and its’ analogues, proteasome inhibitors, monoclonal antibodies, and radiotherapy) initially substantially debulk tumour burden, but after a period of remission ‘plateau phase’ disease invariably relapses due to tumour recrudescence from foci of minimal residual disease (MRD) and accumulating drug resistance. Therefore, there is a compelling clinical need for the development of novel treatment regimens to target MRD and effectively eliminate all remaining tumour cells. This review will discuss the potential use of oncolytic virus (OV) therapies in the treatment of myeloma. Specifically, it will focus on preclinical studies using DNA viruses (adenovirus (Ad), vaccinia virus (VV), myxoma virus (MYXV), and herpes simplex virus (HSV)), RNA viruses (reovirus (reo), coxsackie virus, measles virus (MV) and bovine viral diarrhoea virus (BVDV), and vesicular stomatitis virus (VSV)), and on four types of viruses (VV, reo, MV-NIS and VSV-IFNβ-NIS) that have been assessed clinically in a small number of myeloma patients

    COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses VII. Time delays and the Hubble constant from WFI J2033-4723

    Full text link
    Gravitationally lensed quasars can be used to map the mass distribution in lensing galaxies and to estimate the Hubble constant H0 by measuring the time delays between the quasar images. Here we report the measurement of two independent time delays in the quadruply imaged quasar WFI J2033-4723 (z = 1.66). Our data consist of R-band images obtained with the Swiss 1.2 m EULER telescope located at La Silla and with the 1.3 m SMARTS telescope located at Cerro Tololo. The light curves have 218 independent epochs spanning 3 full years of monitoring between March 2004 and May 2007, with a mean temporal sampling of one observation every 4th day. We measure the time delays using three different techniques, and we obtain Dt(B-A) = 35.5 +- 1.4 days (3.8%) and Dt(B-C) = 62.6 +4.1/-2.3 days (+6.5%/-3.7%), where A is a composite of the close, merging image pair. After correcting for the time delays, we find R-band flux ratios of F_A/F_B = 2.88 +- 0.04, F_A/F_C = 3.38 +- 0.06, and F_A1/F_A2 = 1.37 +- 0.05 with no evidence for microlensing variability over a time scale of three years. However, these flux ratios do not agree with those measured in the quasar emission lines, suggesting that longer term microlensing is present. Our estimate of H0 agrees with the concordance value: non-parametric modeling of the lensing galaxy predicts H0 = 67 +13/-10 km s-1 Mpc-1, while the Single Isothermal Sphere model yields H0 = 63 +7/-3 km s-1 Mpc-1 (68% confidence level). More complex lens models using a composite de Vaucouleurs plus NFW galaxy mass profile show twisting of the mass isocontours in the lensing galaxy, as do the non-parametric models. As all models also require a significant external shear, this suggests that the lens is a member of the group of galaxies seen in field of view of WFI J2033-4723.Comment: 14 pages, 12 figures, published in A&
    • …
    corecore