1,150 research outputs found

    Crystallization Mechanism of Hard Sphere Glasses

    Get PDF
    In supercooled liquids, vitrification generally suppresses crystallization. Yet some glasses can still crystallize despite the arrest of diffusive motion. This ill-understood process may limit the stability of glasses, but its microscopic mechanism is not yet known. Here we present extensive computer simulations addressing the crystallization of monodisperse hard-sphere glasses at constant volume (as in a colloid experiment). Multiple crystalline patches appear without particles having to diffuse more than one diameter. As these patches grow, the mobility in neighbouring areas is enhanced, creating dynamic heterogeneity with positive feedback. The future crystallization pattern cannot be predicted from the coordinates alone: crystallization proceeds by a sequence of stochastic micro-nucleation events, correlated in space by emergent dynamic heterogeneity.Comment: 4 pages 4 figures Accepted for publication in Phys. Rev. Lett., April 201

    The distribution of helium 3 in the deep Western and Southern Indian Ocean

    Get PDF
    Almost a decade after the Geochemical Ocean Sections Study Indian Expedition, the new deep 3He data from the INDIGO program give a further insight into the distribution of this tracer in the Indian Ocean. This distribution exhibits some major features related on one hand to a hydrothermal 3He input in the Gulf of Aden and on the Mid-Indian Ocean Ridge, and on the other to the origin of the water masses and to the characteristics of the deep circulation. (D'après résumé d'auteur

    Facteurs influençant l'apparition précoce d'une pneumoconiose chez le mineur de charbon

    Get PDF
    National audienceL'incidence de la pneumonoconiose a diminue continuellement parmi les mineurs des houilleres pendant les 30 dernieres annees. Actuellement la plupart des cas sont diagnostiques chez les retraites en moyenne vers l'age de 56 ans. Dans ce contexte l'apparition precoce d'une pneumoconiose est un important probleme de sante au travail

    Impact of b-value on estimates of apparent fibre density

    Get PDF
    Recent advances in diffusion magnetic resonance imaging (dMRI) analysis techniques have improved our understanding of fibre-specific variations in white matter microstructure. Increasingly, studies are adopting multi-shell dMRI acquisitions to improve the robustness of dMRI-based inferences. However, the impact of b-value choice on the estimation of dMRI measures such as apparent fibre density (AFD) derived from spherical deconvolution is not known. Here, we investigate the impact of b-value sampling scheme on estimates of AFD. First, we performed simulations to assess the correspondence between AFD and simulated intra-axonal signal fraction across multiple b-value sampling schemes. We then studied the impact of sampling scheme on the relationship between AFD and age in a developmental population (n=78) aged 8-18 (mean=12.4, SD=2.9 years) using hierarchical clustering and whole brain fixel-based analyses. Multi-shell dMRI data were collected at 3.0T using ultra-strong gradients (300 mT/m), using 6 diffusion-weighted shells ranging from 0 – 6000 s/mm2. Simulations revealed that the correspondence between estimated AFD and simulated intra-axonal signal fraction was improved with high b-value shells due to increased suppression of the extra-axonal signal. These results were supported by in vivo data, as sensitivity to developmental age-relationships was improved with increasing b-value (b=6000 s/mm2, median R2 = .34; b=4000 s/mm2, median R2 = .29; b=2400 s/mm2, median R2 = .21; b=1200 s/mm2, median R2 = .17) in a tract-specific fashion. Overall, estimates of AFD and age-related microstructural development were better characterised at high diffusion-weightings due to improved correspondence with intra-axonal properties

    Forward Flux Sampling for rare event simulations

    Full text link
    Rare events are ubiquitous in many different fields, yet they are notoriously difficult to simulate because few, if any, events are observed in a conventiona l simulation run. Over the past several decades, specialised simulation methods have been developed to overcome this problem. We review one recently-developed class of such methods, known as Forward Flux Sampling. Forward Flux Sampling uses a series of interfaces between the initial and final states to calculate rate constants and generate transition paths, for rare events in equilibrium or nonequilibrium systems with stochastic dynamics. This review draws together a number of recent advances, summarizes several applications of the method and highlights challenges that remain to be overcome.Comment: minor typos in the manuscript. J.Phys.:Condensed Matter (accepted for publication

    Computing stationary distributions in equilibrium and non-equilibrium systems with Forward Flux Sampling

    Full text link
    We present a method for computing stationary distributions for activated processes in equilibrium and non-equilibrium systems using Forward Flux Sampling (FFS). In this method, the stationary distributions are obtained directly from the rate constant calculations for the forward and backward reactions; there is no need to perform separate calculations for the stationary distribution and the rate constant. We apply the method to the non-equilibrium rare event problem proposed by Maier and Stein, to nucleation in a 2-dimensional Ising system, and to the flipping of a genetic switch
    corecore