290 research outputs found

    Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate

    Get PDF
    We present a 3.2 Myr record of stable isotopes and physical properties at IODP Site U1308 (reoccupation of DSDP Site 609) located within the ice-rafted detritus (IRD) belt of the North Atlantic. We compare the isotope and lithological proxies at Site U1308 with other North Atlantic records (e.g., sites 982, 607/U1313, and U1304) to reconstruct the history of orbital and millennial-scale climate variability during the Quaternary. The Site U1308 record documents a progressive increase in the intensity of Northern Hemisphere glacial–interglacial cycles during the late Pliocene and Quaternary, with mode transitions at  ∼  2.7, 1.5, 0.9, and 0.65 Ma. These transitions mark times of change in the growth and stability of Northern Hemisphere ice sheets. They also coincide with increases in vertical carbon isotope gradients between the intermediate and deep ocean, suggesting changes in deep carbon storage and atmospheric CO2. Orbital and millennial climate variability co-evolved during the Quaternary such that the trend towards larger and thicker ice sheets was accompanied by changes in the style, frequency, and intensity of millennial-scale variability. This co-evolution may be important for explaining the observed patterns of Quaternary climate change

    M-sequence geomagnetic polarity time scale (MHTC12) that steadies global spreading rates and incorporates astrochronology constraints

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): B06104, doi:10.1029/2012JB009260.Geomagnetic polarity time scales (GPTSs) have been constructed by interpolating between dated marine magnetic anomalies assuming uniformly varying spreading rates. A strategy to obtain an optimal GPTS is to minimize spreading rate fluctuations in many ridge systems; however, this has been possible only for a few spreading centers. We describe here a Monte Carlo sampling method that overcomes this limitation and improves GPTS accuracy by incorporating information on polarity chron durations estimated from astrochronology. The sampling generates a large ensemble of GPTSs that simultaneously agree with radiometric age constraints, minimize the global variation in spreading rates, and fit polarity chron durations estimated by astrochronology. A key feature is the inclusion and propagation of data uncertainties, which weigh how each piece of information affects the resulting time scale. The average of the sampled ensemble gives a reference GPTS, and the variance of the ensemble measures the time scale uncertainty. We apply the method to construct MHTC12, an improved version of the M-sequence GPTS (Late Jurassic-Early Cretaceous, ~160–120 Ma). This GPTS minimizes the variation in spreading rates in a global data set of magnetic lineations from the Western Pacific, North Atlantic, and Indian Ocean NW of Australia, and it also accounts for the duration of five polarity chrons established from astrochronology (CM0r through CM3r). This GPTS can be updated by repeating the Monte Carlo sampling with additional data that may become available in the future.A.M. and J.H. were supported by NSF grant OCE 09–26306, M.T. was supported by a Woods Hole Oceanographic Institution postdoctoral scholarship, and J.E.T.C. was supported by NSF grant OCE 09–60999.2012-12-3

    Magnetic unmixing of first-order reversal curve diagrams using principal component analysis

    Get PDF
    We describe a quantitative magnetic unmixing method based on principal component analysis (PCA) of first-order reversal curve (FORC) diagrams. For PCA we resample FORC distributions on grids that capture diagnostic signatures of single-domain (SD), pseudo-single-domain (PSD), and multi-domain (MD) magnetite, as well as of minerals such as hematite. Individual FORC diagrams are recast as linear combinations of end-member (EM) FORC diagrams, located at user-defined positions in PCA space. The EM selection is guided by constraints derived from physical modeling and imposed by data scatter. We investigate temporal variations of two EMs in bulk North Atlantic sediment cores collected from the Rockall Trough and the Iberian Continental Margin. Sediments from each site contain a mixture of magnetosomes and granulometrically distinct detrital magnetite. We also quantify the spatial variation of three EM components (a coarse silt-sized MD component, a fine silt-sized PSD component, and a mixed clay-sized component containing both SD magnetite and hematite) in surficial sediments along the flow path of the North Atlantic Deep Water (NADW). These samples were separated into granulometric fractions, which helped constrain EM definition. PCA-based unmixing reveals systematic variations in EM relative abundance as a function of distance along NADW flow. Finally, we apply PCA to the combined dataset of Rockall Trough and NADW sediments, which can be recast as a four-EM mixture, providing enhanced discrimination between components. Our method forms the foundation of a general solution to the problem of unmixing multi-component magnetic mixtures, a fundamental task of rock magnetic studies. This article is protected by copyright. All rights reserved

    Magnetic unmixing of first-order reversal curve diagrams using principal component analysis

    Get PDF
    We describe a quantitative magnetic unmixing method based on principal component analysis (PCA) of first-order reversal curve (FORC) diagrams. For PCA we resample FORC distributions on grids that capture diagnostic signatures of single-domain (SD), pseudo-single-domain (PSD), and multidomain (MD) magnetite, as well as of minerals such as hematite. Individual FORC diagrams are recast as linear combinations of end-member (EM) FORC diagrams, located at user-defined positions in PCA space. The EM selection is guided by constraints derived from physical modeling and imposed by data scatter. We investigate temporal variations of two EMs in bulk North Atlantic sediment cores collected from the Rockall Trough and the Iberian Continental Margin. Sediments from each site contain a mixture of magnetosomes and granulometrically distinct detrital magnetite. We also quantify the spatial variation of three EM components (a coarse silt-sized MD component, a fine silt-sized PSD component, and a mixed clay-sized component containing both SD magnetite and hematite) in surficial sediments along the flow path of the North Atlantic Deep Water (NADW). These samples were separated into granulometric fractions, which helped constrain EM definition. PCA-based unmixing reveals systematic variations in EM relative abundance as a function of distance along NADW flow. Finally, we apply PCA to the combined dataset of Rockall Trough and NADW sediments, which can be recast as a four-EM mixture, providing enhanced discrimination between components. Our method forms the foundation of a general solution to the problem of unmixing multi-component magnetic mixtures, a fundamental task of rock magnetic studies.The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC grant agreement 320750.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/2015GC00590

    Component magnetization directions for the 100-248 meters composite depth (1.3-3.2 Ma) interval from Integrated Ocean Drilling Program (IODP) Site 303-U1308

    No full text
    Here we present component magnetization directions (Dec-Inc-MAD) for the 100-248 meters composite depth (1.3-3.2 Ma) interval from Integrated Ocean Drilling Program (IODP) Site U1308 (49° 53'N, 24° 14'W; water depth 3871 m). Methods are described in Channell et al. (2016) (Quaternary Science Reviews, 131, 1-19, 2016, doi:10.1016/j.quascirev.2015.10.011). The magnetic records for 0-1.3 Ma at Site U1308 were published in Channell et al. 2008 (Earth and Planetary Science Letters, 274, 59-71, 2008, doi:10.1016/j.epsl.2008.07.005) and have been archived at: https://doi.org/10.1594/PANGAEA.808942, https://doi.org/10.1594/PANGAEA.808945, https://doi.org/10.1594/PANGAEA.808946. Benthic oxygen isotope stratigraphy for the 0- 3.2 Ma interval are archived at (https://doi.org/10.1594/PANGAEA.871936) and are the basis for the age model. The mean sedimentation rate for the 1.3-3.2 Ma interval is 8.5 cm/kyr
    • …
    corecore