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[1] Geomagnetic polarity time scales (GPTSs) have been constructed by interpolating
between dated marine magnetic anomalies assuming uniformly varying spreading rates.
A strategy to obtain an optimal GPTS is to minimize spreading rate fluctuations in many
ridge systems; however, this has been possible only for a few spreading centers.
We describe here a Monte Carlo sampling method that overcomes this limitation
and improves GPTS accuracy by incorporating information on polarity chron durations
estimated from astrochronology. The sampling generates a large ensemble of GPTSs that
simultaneously agree with radiometric age constraints, minimize the global variation in
spreading rates, and fit polarity chron durations estimated by astrochronology. A key
feature is the inclusion and propagation of data uncertainties, which weigh how each piece
of information affects the resulting time scale. The average of the sampled ensemble gives
a reference GPTS, and the variance of the ensemble measures the time scale uncertainty.
We apply the method to construct MHTC12, an improved version of the M-sequence
GPTS (Late Jurassic-Early Cretaceous, �160–120 Ma). This GPTS minimizes the
variation in spreading rates in a global data set of magnetic lineations from the Western
Pacific, North Atlantic, and Indian Ocean NW of Australia, and it also accounts for the
duration of five polarity chrons established from astrochronology (CM0r through CM3r).
This GPTS can be updated by repeating the Monte Carlo sampling with additional data
that may become available in the future.
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1. Introduction

[2] Over a wide range of Earth science disciplines,
new insights require reliable reference time scales. Because
polarity reversals of the geomagnetic field are globally syn-
chronous, the construction of a Late Cretaceous-Cenozoic
geomagnetic polarity time scale (GPTS) has been a crucial
step in geologic time scale development. The GPTS has
now become the scale to which other facets of geologic time
are correlated [Heirtzler et al., 1968; Cande and Kent, 1992;
Opdyke and Channell, 1996; Ogg and Smith, 2004; Gee
and Kent, 2007]. Since the seminal paper of Shackleton

et al. [1990], rapid progress has been made in improving
Cenozoic time scales by calibrating the GPTS with astro-
chronologies from magnetostratigraphically controlled sedi-
ment sections [e.g., Hilgen, 1991; Billups et al., 2004;
Lourens et al., 2004; Pälike et al., 2006].
[3] Oceanic crust also records M-sequence (Late Jurassic-

Early Cretaceous) magnetic anomalies, and GPTSs for
this interval have been constructed by interpolating a few
radiometric dates and assuming constant or uniformly
varying spreading rates in a subset of all the available
magnetic anomaly profiles [e.g., Larson and Hilde, 1975;
Channell et al., 1995; Tominaga and Sager, 2010]. In the
Mesozoic, uncertainties in orbital solutions preclude direct
temporal correlations, and astrochronology can only con-
strain durations (e.g., of polarity chrons) but does not pro-
vide absolute age information [Hinnov, 2004]. The marine
magnetic anomaly record provides the template for polarity
reversal and is therefore indispensable for constructing a
M-sequence GPTS. Because of the lack of reliable radio-
metric ages for the M-sequence GPTS, limitations of avail-
able astrochronologies, and reliance on the assumption of
constant spreading rates, uncertainties in the Late Jurassic-
Early Cretaceous time scales are the highest in the Phanero-
zoic and reach�4Myr according toHinnov and Ogg [2007].
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[4] Here, we provide an updated M-sequence GPTS,
named MHTC12, that addresses some of the shortcomings
of previous attempts. Following the “least favoritism” prin-
ciple advocated by Huestis and Acton [1997], the GPTS
obtained here minimizes the global variability of spreading
rates in all the available marine magnetic anomaly sequen-
ces, thereby replacing the necessity for a constant spreading
rate assumption. Moreover, MHTC12 includes information
on polarity chron durations estimated from astrochronology.
This integration is accomplished by propagating uncertain-
ties from the input data, which weigh the extent to which
each piece of information constrains the final GPTS. We
argue that such an integration of diverse data sources is an
advance from the usual “winner-take-all” strategy where the
GPTS is based on the set of data deemed most accurate (e.g.,
a selected set of magnetic lineations).

2. Background

2.1. Notation

[5] Following general nomenclature [Opdyke and Channell,
1996; Gee and Kent, 2007], M-sequence magnetic anomalies
are named M0r, M1n, etc., and the corresponding polarity
chrons are CM0r, CM1n, etc. Magnetic polarity is explicitly
noted by appending “n” for normal and “r” for reversed. We
denote years of age as “a” and years of duration as “yr,” with
the usual prefixes (e.g., 1 Ma = 1 million years ago).

2.2. Previous M-Sequence GPTSs

[6] The M-sequence magnetic anomalies have been
mapped in the oldest parts (about 120–160Ma) of the world’s
oceans, and the best continuous lineation sets can be found in
the Western Pacific, Northern Atlantic, and Indian Ocean

NW of Australia (Figure 1); available studies are summarized
by Tominaga and Sager [2010]. Several M-sequence GPTSs
have been constructed by assuming constant spreading rates
between radiometric dates in the Hawaiian magnetic linea-
tions [Larson and Pitman, 1972; Larson and Hilde, 1975;
Channell et al., 1995]. The most recent of these time scales
[Channell et al., 1995], hereafter referred to as CENT94, is
based on a single magnetic anomaly profile in the Hawaiian
lineations and three dates for CM0, CM16, and CM25.
[7] In the most recent Geological Time Scale compilation

[Gradstein et al., 2004], Ogg and Smith [2004] constructed a
M-sequence GPTS with a composite magnetic anomaly
record based on the Hawaiian lineations in the M0-M25n
interval, the Japanese lineations in the M25r-M27n interval
[Handschumacher et al., 1988], and a deep-tow survey of the
Japanese lineations in the M27r-M41 interval [Sager et al.,
1998]. In this GPTS, hereafter named GTS2004, Ogg and
Smith [2004] used a “minimalist” spreading rate model
(four intervals of constant spreading rate separated by small
jumps or linear changes), three radiometric age constraints
(for CM0, CM26, and CM41), and a few polarity chron dura-
tions from astrochronology (see below). Although GTS2004
goes back to CM41, acceptance of the pre-CM29 reversal
record has been debated because these anomalies have low
amplitudes and the record is only from one spreading system,
the Japanese lineation set [Sager et al., 1998; Tominaga
et al., 2008]. To date, CM29 is the oldest chron where
higher amplitude magnetic anomaly lineations are available
from multiple locations, and we focus on the CM0-CM29
interval in this paper.
[8] Most recently, Tominaga and Sager [2010] con-

structed a GPTS for the CM0-CM29 interval based on an
updated set of 52 magnetic anomaly profiles from the Pacific

Figure 1. Red boxes indicate ocean floor areas with the M-sequence magnetic lineations used in this
study. The shaded background shows 120–160 Ma oceanic crust where M-sequence magnetic anomalies
have been observed from the age grid ofMüller et al. [2008], with Cretaceous (K) ages in green and Juras-
sic (J) in blue.
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(Figure 2). Their GPTS, hereafter named TS10, is not built
assuming a constant spreading rate on a single set of linea-
tions. Instead, TS10 is based on a composite profile obtained
by averaging rescaled distances measured on the Hawaiian,

Japanese and Phoenix lineations, and is constrained by two
age calibration points (CM0 and CM26). This is equivalent
to assigning a constant spreading rate to the composite pro-
file and assuming a constant ratio of spreading rates between

Figure 2. Block model distances used in this study, after TS10 except for the interval M6n-M15r in the
Keathley block model, which was not included in the TS10 compilation. Data in this interval were inserted
using the distances published in CENT94. Note the different distance scales.
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the three lineation sets. The up-to-date magnetic block model
data published by TS10 will be the basis for the GPTS pre-
sented here.
[9] The GPTSs described above relied on the assumption

of constant (or smoothly varying) spreading rates in a limited
set of magnetic lineations. It was also recognized, however,
that a valid GPTS should result in small spreading rate fluc-
tuations on other ridges [Cande and Kent, 1992; Channell
et al., 1995]. Huestis and Acton [1997] pointed out that
there is no a priori reason to expect that spreading rates
vary smoothly at one particular location while they fluctuate
more erratically at all other ridges. They argued for a global
approach where a GPTS is constructed by minimizing the
spreading rate variation in all the magnetic anomaly linea-
tions examined and ran a test inversion on a demonstration
data set. We adopt the same philosophy and add uncertainty
quantification in the GPTS construction process.

2.3. Astrochronology in the Mesozoic

[10] Over the last few decades, time series analyses of
sediment properties have conclusively shown periodicities
linked to Milankovitch orbital cycles [e.g., Hays et al., 1976;
Martinson et al., 1987]. This discovery sparked considerable
interest in using orbital cycles to measure time in the geo-
logical record, and astronomical cycle stratigraphy started its
development [Fischer et al., 1990; Shackleton et al., 1990;
Hilgen, 1991; Schwarzacher, 1993].
[11] In principle, an astronomically based time scale can

be constructed by correlating records of sediment properties
controlled by climate (e.g., carbonate content) with orbital
solutions (for eccentricity, obliquity, and precession) or with
inferred insolation for a particular season and location. The
most recent version of the Neogene geological time scale
[Lourens et al., 2004] represents a compilation of numerous
such individual astrochronological studies.
[12] Neogene astrochronology has significant implications

for global variations in oceanic spreading rates. Wilson
[1993] and Krijgsman et al. [1999] found that the spread-
ing rates implied by astronomical dating in the last 10 Ma
were less variable than rates computed from the Cande and
Kent [1992] GPTS; astronomical age control tends to
steady spreading rates [see also Gordon, 1993; Baksi, 1994;
Langereis et al., 1994; Krijgsman et al., 1999]. This obser-
vation supports the notion that minimizing global spreading
rate fluctuations is a useful strategy to construct a GPTS
[Huestis and Acton, 1997].
[13] Astronomical dating in the geological past beyond a

few tens of Ma is more challenging than in the Cenozoic. The
solar system is chaotic, and because of sensitivity to initial
conditions the phases of orbital cycle solutions are accurate
only to about 50 Ma [Laskar, 1999; Laskar et al., 2004,
2011]. Astrochronology in the Mesozoic cannot, therefore,
be based on direct temporal correlation, but instead relies on
detecting periodicities in sedimentary records that correspond
to supposed periods of orbital cycles. The resulting “floating”
time scales constrain the duration of intervals but need
independent information to obtain absolute ages [Hinnov,
2004]. An additional difficulty is that tidal dissipation pro-
gressively decreases the rotation rate of the Earth and
increases the Earth-Moon distance, so that the obliquity and
precession periods were shorter in the geologic past; on the
other hand, the long eccentricity cycle (405 kyr) is expected

to have remained rather constant throughout the Phanerozoic
[Berger et al., 1992; Laskar et al., 2004, 2011].
[14] The duration of Mesozoic intervals have been esti-

mated by counting bedding couplets and bundles interpreted
to correspond to precession and eccentricity cycles [Fischer
and Schwarzacher, 1984; Herbert and Fischer, 1986;
Herbert, 1992;Herbert et al., 1995; Fiet and Gorin, 2000] or
by some form of spectral analysis [Park and Herbert, 1987;
Hinnov and Park, 1998; Meyers and Sageman, 2007;
Meyers, 2008; Malinverno et al., 2010]. The durations of
CM0 through CM2 estimated byHerbert [1992] were used to
constrain GTS2004. In this study, we directly incorporate,
into the GPTS construction process, the durations of CM0
through CM3 and their uncertainties estimated by astro-
chronology [Fiet and Gorin, 2000; Malinverno et al., 2010].

3. Data

3.1. Magnetic Anomaly Block Model Distances

[15] The first step in GPTS construction is to generate
block models consisting of alternating magnetic polarity
intervals. The positions of polarity changes in these block
models are adjusted to match measured magnetic anomaly
profiles projected on a line perpendicular to the local strike of
magnetic lineations and deskewed so that the anomalies are
symmetrical. Two recent GPTS studies list M-sequence
block model distances derived in this fashion, CENT94
[Channell et al., 1995] and TS10 [Tominaga and Sager,
2010]. CENT94 constructed block models for the Western
Pacific Hawaii (based on 1 profile), Japanese (6), and Phoe-
nix lineations (4), supplemented by a North Atlantic Keath-
ley block model computed from the spreading rates of
Klitgord and Schouten [1986]. TS10 examined a larger set
of magnetic anomaly profiles and built block models for the
Western Pacific Hawaii (based on 11 profiles), Japanese (28),
and Phoenix lineations (13), the Indian Ocean NW of Aus-
tralia (7), and the North Atlantic Keathley (4) and Canary (7)
lineations (Figure 1). The Western Pacific data in TS10
included 9 out of the 11 profiles used by CENT94. The block
models of TS10 were built by averaging polarity boundaries
determined for several profiles, thus reducing the noise due to
irregularities in the crustal recording process, and are the
most comprehensive up-to-date compilation. We use for our
GPTS the TS10 block model distances, adding the distances
given by CENT94 for the interval M6n-M15r in the Keathley
block model (Figure 2). Our magnetic anomaly nomenclature
follows TS10, except that M25Ar, M25n5, and M25r5 in
TS10 have been changed to M25Ar.1r, M25Ar.1n, and
M25Ar.2r, respectively, to follow general nomenclature rules
[e.g., Gee and Kent, 2007].

3.2. Radiometric Dates

[16] Radiometric dates relevant to the GPTS in the CM0-
CM29 time interval are listed in Table 1. Most of these dates
do not have a direct or precise tie to the reversal sequence,
and previous M-sequence GPTSs have been constructed on
the basis of two (TS10) or three dates (CENT94, GTS2004).
Our GPTS is constrained by two radiometric dates, and the
GPTS ages we obtain will be later compared to all dates in
Table 1.
[17] The first date used here is 121.2 � 0.5 Ma for the

middle of CM0r. This date is from the results of He et al.
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[2008] with an increased uncertainty to account for the
unknown position of the dated material within CM0r, which
lasts about 0.5 Myr. All uncertainties reported here are one
standard deviation; radiometric age uncertainties are based
on analytical error and do not therefore include uncertainties
related to causes such as standard age uncertainty or sample
alteration. He et al. [2008] dated reversely magnetized lavas
in northeast China and argue that the ages of these volcanics
correspond to CM0r. Their conclusion is consistent with
the original interpretation of Pringle and Duncan [1995],
who assigned to the end of CM1r a 124.6 Ma date measured
on reversely magnetized basalt sampled at MIT Guyot
(Table 1). An age of 121 Ma for the onset of CM0r was used
in the CENT94 GPTS.
[18] The age of CM0r, however, is debated. The critical

question is which reversed polarity chron is being dated by
the work of Pringle and Duncan [1995]: CM0r or CM1r?Ogg
et al. [2004] assigned the 124.6Ma age ofPringle andDuncan
[1995] to CM0r and concluded that the onset of CM0r (the
Barremian-Aptian boundary) should be at 125 Ma. This age
assignment is supported by a recent astrochronology from the
Piobbico Core (Central Italy) that estimates an Aptian duration
of 13.42 Myr and an age of 125.45 Ma for the Barremian-
Aptian boundary [Huang et al., 2010]. On the other hand,
cyclostratigraphy of the same Piobbico Core and neighboring
outcrops by Herbert et al. [1995] gave a duration of 10.1 Myr
for the interval between the end of the Aptian and the end of
CM0r, implying a Barremian-Aptian boundary at �122 Ma.
[19] The alternative age assignments for CM0r are dis-

cussed at length in the papers cited above. Our preference is
for the 121 Ma date used in the CENT94 GPTS because it is
difficult to reconcile a 125 Ma age for CM0r, which is the
last reversed-polarity chron preceding the Cretaceous Long
Normal superchron, with the radiometric date of 121.2 Ma
measured in reversed-polarity volcanics by He et al. [2008].
The MHTC12 GPTS obtained here consequently assumes a
date of 121.2 � 0.5 Ma for the middle of CM0r. We rec-
ognize, however, that the age of CM0r is not settled, and we
include in the auxiliary material an alternative GPTS,
MHTC12–125, constructed in the same way as MHTC12
except for an age of 125 � 0.5 Ma assigned to the onset of
CM0r.1

[20] The second date used here is 155.3 � 3.4 Ma
assigned to the end of CM26n. This age was obtained by

Ludden [1992] on a celadonite vein recovered from Ocean
Drilling Program (ODP) Site 765 in the Argo Abyssal Plain.
This age was assigned to the middle of CM26n by
GTS2004, but the end of CM26n better matches the location
of Site 765 in the polarity block model of Sager et al.
[1992]. This is a minor difference given the large uncer-
tainty of this date.

3.3. Chron Durations From Astrochronology

[21] The polarity chron durations from astrochronology
used in this study are listed in Table 2. These chron dura-
tions, estimated by Malinverno et al. [2010] and by Fiet and
Gorin [2000] on Cretaceous pelagic sequences in northern
and central Italy, have been chosen because they are closely
tied to a magnetic stratigraphy and include a quantified
uncertainty. The durations of CM0r, CM1n, CM1r, and
CM3n in Table 2 are the same (within uncertainties) as those
estimated for CM0r by Huang et al. [2010] and for the other
chrons by Herbert [1992].

4. Monte Carlo GPTS Construction

[22] The problem of GPTS construction can be stated as
an inverse problem: find ages for polarity chron boundaries
in a model parameter vector m that simultaneously agree
with radiometric dates (vector d), minimize the variability of
spreading rates evaluated from block model distances (vec-
tor b), and fit polarity chron durations from astrochronology
(vector c). We apply a Bayesian formulation of the inverse
problem [e.g., Tarantola and Valette, 1982; Jackson and
Matsu’ura, 1985; Duijndam, 1988; Malinverno, 2002],
where the solution is a posterior distribution of GPTS vec-
tors that can be written as

p m j d; b; cð Þ ¼ const:� p mð Þp d jmð Þ p b jmð Þ p c jmð Þ; ð1Þ

where p(m) is a prior distribution and p(d ∣m), p(b ∣m), and
p(c ∣ m) are likelihood functions (the normalizing constant

Table 1. Radiometric Dates in the M-sequence Intervala

Radiometric
Date (Ma)

Stratigraphic
Age Polarity Chron Reference Notes

121.2 � 0.25 Aptian Within CM0r He et al. [2008] Ar/Ar age for the TCR sanidine age of Renne et al. [1998]
124.6 � 0.9 Barremian Near end of CM1rb Pringle and Duncan

[1995]
Ar/Ar age corrected in GTS2004 to the TCR sanidine age

of Renne et al. [1998]
136 � 3 Late Valanginian CM11r-CM12r Wan et al. [2011] SHRIMP U-Pb age. Correlation to magnetic stratigraphy

after GTS2004
137 + 0.8/–0.3 Early part of

late Berriasian
CM16n-CM16r Bralower et al. [1990] U-Pb zircon age

144.6 � 0.4 Earliest Berriasian
or younger

After onset of
CM19n.2n

Mahoney et al. [2005] Ar/Ar age for the FCT-3 biotite age of Renne et al. [1998].
Correlation to magnetic stratigraphy after GTS2004

155.3 � 3.4 Oxfordian End of CM26n Ludden [1992] K/Ar age. Polarity chron assignment after Sager et al. [1992]

aUncertainties are one standard deviation.
bGTS2004 assigns this date to CM0r.

Table 2. Chron Durations From Astrochronology Studiesa

Polarity Chron Estimated Duration (Myr) Reference

CM0r 0.49 � 0.05 Malinverno et al. [2010]
CM1n 2.28 � 0.24 Fiet and Gorin [2000]
CM1r 0.43 � 0.21 Fiet and Gorin [2000]
CM3n 0.7 � 0.19 Fiet and Gorin [2000]
CM3r 1.75 � 0.24 Fiet and Gorin [2000]

aUncertainties are one standard deviation.

1Auxiliary materials are available in the HTML. doi:10.1029/
2012JB009260.
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can be ignored). The prior distribution is based on the
expected statistical characteristics of the GPTS, and the
likelihood functions measure how closely a given GPTS in
the vector m agrees with the data in the vectors d, b, and c.
[23] A way to solve the inverse problem is to find an

optimal GPTS as the value of m that maximizes the value of
the posterior distribution in equation (1), for example using a
nonlinear optimization method as done by Huestis and Acton
[1997]. Optimization, however, does not quantify the uncer-
tainty that is inherent to the GPTS, e.g., because of spreading
rate fluctuations or imprecise dating constraints [Agrinier et al.,
1999]. Instead of striving to find a best value for the GPTS,
we apply a Monte Carlo sampling method to obtain a large
ensemble of possible GPTSs that agreewith the data. Themean
value of this ensemble will give the reference GPTS, and its
variability will measure the uncertainty associated with the
GPTS (e.g., quantified by the standard deviation of the sampled
GPTS values). A similar strategy to obtain a GPTS using a
genetic algorithm has been proposed by Acton and Huestis
[1994].
[24] The sampling can be carried out efficiently by Markov

chain Monte Carlo (MCMC) methods [Gilks et al., 1996],
which have been used extensively in geophysical inverse
problems [e.g., Mosegaard and Tarantola, 1995; Sen and
Stoffa, 1995; Malinverno, 2002; Sambridge and Mosegaard,
2002; Sambridge et al., 2006]. In these methods, the vector
m is iteratively modified to perform a random walk in the
space of possible model parameters and each step in the ran-
dom walk only depends on the previous value of m (the
Markov property). We follow the practical strategy outlined
by Mosegaard and Tarantola [1995], which can be broken
in two parts. First, a random walk process generates a candi-
date GPTS that agrees with prior information on the distribu-
tion of polarity chron durations and with radiometric dates.
The candidate GPTS is then accepted or rejected following
the Metropolis algorithm [Metropolis et al., 1953; Chib and
Greenberg, 1995] depending on the extent it minimizes the
total variability of spreading rates and how well it fits polarity
chron durations from astrochronology. When repeated many
times, this simple recipe samples an ensemble of GPTSs that
will be asymptotically distributed as in the posterior distri-
bution of equation (1) [Mosegaard and Tarantola, 1995].
Details on the implementation of the MCMC algorithm are
in Appendix A, and in the rest of this section we illustrate
the Monte Carlo sampling procedure with a simple example.
[25] Figure 3a shows the results of the random walk process

that generates candidate GPTSs. The sampling starts from an
arbitrary GPTS constructed by concatenating polarity chron
durations sampled from the prior distribution. We use here a
lognormal prior distribution for the polarity chron durations
with a mean and variance taken from the log-chron durations
in previous M-sequence GPTSs (CENT94, GTS2004, and
TS10). Ages in the GPTS are then rescaled to match dates
sampled from the normal distribution that defines the uncer-
tainty of the two radiometric dates used here (for clarity of
illustration, these dates are fixed to their mean value in the
example of Figure 3). The random walk modifies iteratively
this initial GPTS by choosing one chron at random, sampling
a new duration for this chron from the prior distribution,
and rescaling the GPTS to match new values for radiometric
dates sampled from their distribution. Repeating this random
walk process generates an ensemble of GPTSs that match

radiometric dates within their uncertainty and have a broad
distribution of polarity chron durations.
[26] Figure 3b shows the result of accepting or rejecting

candidate GPTSs generated by the previous random walk
algorithm depending on how much they minimize the global
variation of spreading rates. The probability of accepting a
candidate depends on the likelihood function of spreading
rates p(b ∣m), defined in Appendix A. An important parameter
in this likelihood is a measure of howmuch the spreading rates
in each block are expected to fluctuate. As the lineation sets
considered here have markedly different spreading rates, we
quantify the spreading rate variation with a global coefficient
of variation (CV), the standard deviation of spreading rates
divided by their average. In practice, it is impossible to obtain
a GPTS that makes spreading rates constant in all the block
models, and we determined a target value for the CV by run-
ning sampling experiments and observing how much the var-
iation of spreading rates can be actually minimized. We found
sampling could reduce the global CV to about 50% at best, and
we use this value for the likelihood function in our final sim-
ulation. This value is confirmed by an analysis of the CV
expected for estimated errors in the block model distances,
asymmetric spreading, and long-term variations in spreading
rate (Appendix B).
[27] The sampling results in Figure 3b are clearly different

from those in Figure 3a. Rather than fluctuating erratically
throughout, the sampled GPTSs in Figure 3b progressively
adjust to minimize spreading rate variations during a “burn-in”
phase that lasts a couple of thousand iterations and then display
changes much smaller than those in Figure 3a. After the “burn-
in” phase, the ensemble of GPTSs in Figure 3b will have a
distribution defined by the product p(m) p(d ∣ m) p(b ∣ m) of
equation (1), the prior times the likelihoods of the radiometric
dates d and of the spreading rates given by the block model
distances in b.
[28] Finally, Figure 3c shows the result of including the

likelihood function p(c ∣m) of polarity chron durations from
astrochronology, defined in Appendix A. Astrochronologies
constrain the youngest five polarity chrons in theM-sequence
GPTS (Table 2), and Figure 3c shows that the variation in
the duration of these chrons is reduced compared to
Figure 3b. After the “burn-in” phase, the ensemble of GPTSs
in Figure 3c will be distributed as in the full posterior dis-
tribution of equation (1) and will simultaneously agree with
radiometric dates, minimize the global variation of spreading
rates, and fit polarity chron duration constraints.

5. Application to the CENT94 Block Models

[29] To demonstrate how theMonte Carlo sampling method
minimizes global spreading rate variations, we applied it to
the Hawaii, Japanese, Phoenix, and Keathley block model
distances in CENT94. The CENT94GPTSwas built assuming
constant spreading rates in the Hawaiian lineations, and it
results in variable spreading rates in the other block models
(CV of 45–56%; Figure 4a). We computed an alternative
GPTS by running the Monte Carlo sampling method with the
polarity block models and absolute age constraints used in
CENT94. The resulting GPTS allows for some variability of
spreading rates in the Hawaii block model (CV = 24%;
Figure 4b), but the rate fluctuations in the other three block
models are smaller compared to CENT94. In the Japanese and
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Figure 3. Illustrative Monte Carlo sampling of M-sequence GPTSs for different constraints. Each sampled
GPTS is plotted in the usual convention (black is normal polarity, white is reversed). (a) The algorithm
generates candidate GPTSs whose chron durations are distributed as in the prior distribution and that
match two radiometric dates. The two dates (121.2 Ma and 155.3 Ma) are fixed for clarity in this illus-
tration. (b) Candidate GPTSs that minimize spreading rate variations are preferentially accepted. (c) In
addition to minimizing spreading rate variations, the GPTSs are also constrained by the durations
estimated by astrochronology of the five youngest polarity chrons.
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Keathley block models, the CV of spreading rates decreases
to 28–30%, a value comparable to that in the Hawaii block
model. As in the results of Channell et al. [1995], the
Phoenix lineations display the most variable spreading rates

(CV = 47%). The alternative GPTS also attenuates some
prominent spreading rate spikes (e.g., in CM24 of the Japanese
and Keathley block models). The total CV of spreading rates,
which was 43% in CENT94, is reduced to 33%. Age

Figure 4. (a) Spreading rates implied by the CENT94 GPTS in the block models of Channell et al.
[1995]. CENT94 was built assuming constant spreading rates in the Hawaiian block model. Percentages
in parentheses indicate the coefficient of variation (CV = standard deviation/average) of spreading rate
in each block model. (b) A time scale obtained by applying the Monte Carlo method described here mini-
mizes spreading rate fluctuations in all the block models.
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differences between CENT94 and the alternative GPTS are not
insignificant, reaching �400 kyr around CM1 and CM10 and
�800 kyr around CM22.
[30] This alternative GPTS demonstrates that the Monte

Carlo method can reduce the variability of spreading rates on
multiple block models from several spreading centers. The rest
of this paper describes the new MHTC12 GPTS we obtain by
minimizing spreading rate fluctuations for the TS10 polarity
block models.

6. The MHTC12 M-Sequence GPTS
and Its Uncertainty

[31] MHTC12 is shown in Figure 5 and listed in Table 3.
The MHTC12 ages are the average of the ensemble of GPTSs

generated by Monte Carlo sampling, and the uncertainties in
ages of chron boundaries and chron durations are the standard
deviations of the ensemble. The age uncertainties we calculate
are close to those reported by Hinnov and Ogg [2007], who
estimated a 95% confidence limit (two standard deviations) of
4 Myr in the Upper Jurassic interval of the M-sequence
(approximately CM29-CM19), decreasing in the Cretaceous
to 1 Myr around CM0r. The ages and uncertainties in Table 3
are also included in the auxiliary material, together with results
for an alternative MHTC12–125 obtained in the same way
except for an age of 125 � 0.5 Ma assigned to the onset of
CM0r (see the “Radiometric dates” section). Details on the
sampling procedure are in Appendix A.
[32] Figure 6 compares the variability in spreading rates

for MHTC12 to that of TS10. TS10 was constructed by

Figure 5. (a) MHTC12 is the average M-sequence GPTS in the Monte Carlo simulation. (b) The asso-
ciated uncertainties in the ages of chron boundaries and (c) the chron duration uncertainties. Uncertainties
are one standard deviation.
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minimizing spreading rate variations in the Pacific lineations
(Hawaii, Japanese, and Phoenix), and as expected it results
in a lower CV of spreading rates for the Pacific block models
compared to those in the Indian and Atlantic Ocean
(Figure 6a). At the price of a small increase in the CV of the
Pacific lineations, MHTC12 decreases spreading rate fluc-
tuations in the Indian and Atlantic Ocean block models,
making the CV of spreading rates in different block models
more uniform (Figure 6b). Also, the total CV of spreading
rates decreases from 51% in TS10 to 44% in MHTC12.
While this is not a dramatic improvement, the CV of mea-
sured spreading rates is not expected to be much less than
50% (Appendix B), and the addition of information from the
Indian and Atlantic Ocean block models improves the reli-
ability of MHTC12.
[33] Figure 7 compares histograms of the youngest five

polarity chron durations in the MHTC12 ensemble with the
means and standard deviations given by astrochronology
(Table 2). Although the astrochronology data were taken
into account during the sampling, the distributions of sam-
pled chron durations do not exactly match those given by
astrochronology. The reason is that the sampled chron
durations do not only have to fit the astrochronology data,
but also need to minimize spreading rate variations. Each of
these pieces of information influences the sampling process,
and their respective weights depend on the uncertainty of the
astrochronology data and on the CV of spreading rates. This

Table 3. MHTC12M-Sequence GPTS and Estimated Uncertaintiesa

Polarity
Chron End Age (Ma)

End Age
Uncertainty (Myr)

Duration
Uncertainty (Myr)

CM0r 120.95 0.498 0.0409
CM1n 121.54 0.497 0.176
CM1r 123.51 0.52 0.0753
CM3n 123.92 0.528 0.0929
CM3r 124.58 0.542 0.151
CM5n 126.05 0.577 0.15
CM5r 127.19 0.623 0.123
CM6n 127.98 0.658 0.061
CM6r 128.15 0.666 0.0632
CM7n 128.33 0.675 0.0673
CM7r 128.54 0.686 0.104
CM8n 129 0.709 0.0831
CM8r 129.32 0.726 0.0886
CM9n 129.67 0.744 0.0876
CM9r 130.02 0.762 0.0971
CM10n 130.43 0.786 0.0864
CM10r 130.76 0.804 0.0817
CM10Nn.1n 131.07 0.822 0.0808
CM10Nn.1r 131.35 0.839 0.0517
CM10Nn.2n 131.47 0.846 0.0745
CM10Nn.2r 131.71 0.861 0.0528
CM10Nn.3n 131.83 0.867 0.0647
CM10Nr 132.01 0.878 0.0793
CM11n 132.3 0.895 0.092
CM11r 132.67 0.917 0.0857
CM11An 132.99 0.937 0.0534
CM11Ar 133.12 0.945 0.0865
CM12n 133.44 0.965 0.0788
CM12r.1r 133.71 0.982 0.0632
CM12r.1n 133.88 0.992 0.0635
CM12r.2r 134.04 1 0.112
CM12An 134.58 1.04 0.0498
CM12Ar 134.69 1.04 0.0695
CM13n.1n 134.91 1.06 0.0809
CM13n.1r 135.19 1.07 0.0567
CM13n.2n 135.33 1.08 0.0742
CM13r 135.56 1.1 0.0882
CM14n 135.92 1.12 0.0681
CM14r 136.13 1.14 0.11
CM15n 136.66 1.17 0.0868
CM15r 137 1.19 0.0977
CM16n 137.43 1.22 0.157
CM16n.1r 138.49 1.29 0.0555
CM16n.2n 138.64 1.3 0.0602
CM16r 138.82 1.31 0.108
CM17n 139.4 1.35 0.0743
CM17r 139.69 1.37 0.145
CM18n 140.76 1.44 0.0854
CM18r 141.19 1.47 0.0952
CM19n.1n 141.7 1.5 0.0743
CM19n.1r 142.01 1.52 0.0576
CM19n.2n 142.2 1.53 0.0901
CM19r 142.66 1.57 0.0771
CM20n.1n 143.02 1.59 0.0735
CM20n.1r 143.34 1.61 0.0585
CM20n.2n 143.53 1.63 0.0784
CM20r 143.89 1.65 0.11
CM21n 144.54 1.7 0.105
CM21r 145.16 1.74 0.115
CM22n.1n 145.83 1.79 0.136
CM22n.1r 146.56 1.84 0.0777
CM22n.2n 146.78 1.86 0.091
CM22n.2r 147.08 1.88 0.0721
CM22n.3n 147.27 1.89 0.0635
CM22r 147.41 1.9 0.103
CM22An 147.95 1.94 0.0604
CM22Ar 148.13 1.95 0.0665
CM23n 148.36 1.97 0.108
CM23r.1r 148.74 2 0.0928
CM23r.1n 148.99 2.01 0.0895
CM23r.2r 149.21 2.03 0.0985

Table 3. (continued)

Polarity
Chron End Age (Ma)

End Age
Uncertainty (Myr)

Duration
Uncertainty (Myr)

CM24n 149.78 2.07 0.0879
CM24r.1r 150.24 2.1 0.0579
CM24r.1n 150.44 2.11 0.0413
CM24r.2r 150.54 2.12 0.0528
CM24An 150.7 2.13 0.0483
CM24Ar 150.84 2.14 0.0503
CM25n 150.99 2.15 0.115
CM25r 151.36 2.18 0.0939
CM25An.1n 151.56 2.19 0.102
CM25An.1r 151.81 2.21 0.0892
CM25An.2n 152.07 2.23 0.0722
CM25An.2r 152.24 2.24 0.0651
CM25An.3n 152.38 2.25 0.0757
CM25Ar.1r 152.58 2.26 0.0692
CM25Ar.1n 152.73 2.27 0.0633
CM25Ar.2r 152.86 2.28 0.0765
CM26n 153.06 2.3 0.0743
CM26r 153.25 2.31 0.0775
CM27n 153.45 2.33 0.0681
CM27r 153.6 2.34 0.0767
CM28n 153.8 2.35 0.0732
CM28r 153.98 2.37 0.0833
CM28An 154.21 2.38 0.0894
CM28Ar 154.38 2.4 0.0907
CM28Bn 154.56 2.41 0.0858
CM28Br 154.72 2.42 0.0911
CM28Cn 154.91 2.44 0.0942
CM28Cr 155.11 2.45 0.0872
CM29n 155.28 2.46 0.11
CM29r 155.55 2.49 0.103
CM30n 155.79 2.51

aUncertainties are one standard deviation. Polarity chron nomenclature is
as in TS10, with CM25Ar, CM25n5, and CM25r5 in TS10 changed to
CM25Ar.1r, CM25Ar.1n, and CM25Ar.2r, respectively, to follow general
chron nomenclature rules.
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comparison underscores an important point: when different
kinds of data are included in the GPTS construction, the
final GPTS will not necessarily match exactly each piece
of information.

[34] This point is further illustrated in Figure 8, where the
ages in the MHTC12 ensemble for the middle of CM0r and
the end of CM26n are compared with the means and standard
deviations of the corresponding radiometric dates (see the

Figure 6. Spreading rates implied by the (a) TS10 GPTS and (b) MHTC12. Percentages in parentheses
indicate the coefficient of variation (CV = standard deviation/average) of spreading rate in each block
model. The TS10 GPTS results in lower CVs for the block models that were used to construct the time scale
(Hawaii, Japanese and Phoenix) compared to those of block models from other spreading centers. The
GPTS obtained here, which uses all block models, decreases the total CV of spreading rates (44% versus
51% for TS10) and the differences between the CVs of different block models.
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“Radiometric dates” section). While the distributions are the
same for CM0r, they differ somewhat for CM26n, whose
radiometric age has a large uncertainty of 3.4 Myr. This
difference is slight: more than 95% of the ages sampled in the
MHTC ensemble for CM26n are within the 95% bounds of
the radiometric age (�two standard deviations). The reason
for this difference is that the polarity chron durations from
astrochronology place a weak constraint on the average
spreading rates. This constraint propagates to the older end
of the GPTS, resulting in an average age in the sampled

ensemble that is slightly younger and has a smaller uncer-
tainty than the radiometric date. This explanation has been
tested by running the Monte Carlo simulation without the
chron durations from astrochronology; in this case, the
sampled age distribution of CM26n matches that of the
corresponding radiometric age (actual results not shown).
[35] MHTC12 is constrained only by two radiometric

dates, and Figure 9 compares the sampling results to the other
dates listed in Table 1. The comparison in Figure 9 excludes
the 125 � 0.5 Ma age assigned to the onset of CM0r by

Figure 7. Chron durations in MHTC12 (gray histograms, average and standard deviation in black lettering)
compared to chron duration estimates from astrochronology used in constructing the time scale (mean and
standard deviation in red symbols and letters). The sampled chron durations do not match exactly the
uncertainties of the astrochronology estimates because the sampled GPTSs also need to minimize the total
variability of spreading rates.

Figure 8. Ages in MHTC12 (gray histograms, average and standard deviation in black lettering) com-
pared to radiometric dates used in constructing the time scale (mean and standard deviation in red symbols
and letters). The age of CM26n does not match exactly the uncertainty of the corresponding radiometric
date because the chron durations from astrochronology constrain the average spreading rates.
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GTS2004, which is an alternative interpretation (see the
“Radiometric dates” section). The sampled GPTS ages are
consistent with all the radiometric dates, given the respective
uncertainties. We note that the uncertainties in Figure 9 for
the dates not used in constraining the GPTS are minimum
values, because they represent analytical errors only and do
not include uncertainties due to approximate correlations to
the polarity reversal record. For example, the 137 Ma date of
Bralower et al. [1990] has been assigned to the middle of the
CM16n-CM16r interval in Figure 9; this date, however,
could correspond to any point in this interval, which spans
almost 2 Myr.
[36] Figure 10 compares MHTC12 ages to previous

M-sequence GPTSs. MHTC12 is our preferred time scale,
but to make a fair comparison Figure 10 shows differences
with MHTC12–125 for GTS2004 and TS10, which assumed
an age of 125 Ma for the onset of CM0r. Some of the differ-
ences with CENT94 and GTS2004 (e.g., in the interval
CM10N-CM14) are likely due to the different polarity block
models used to build these GPTSs. Age differences with TS10
are smoother, as TS10 was based on the same Pacific block
models, but they still can exceed 1 Myr (e.g., around CM20).
While MHTC12 is an important update of the M-sequence
GPTS, it is sobering to note that age differences with previous
time scales are within two standard deviations of the uncer-
tainty inherent to MHTC12 (Figure 10). Improving the accu-
racy of the M-sequence time scale will require more absolute
age constraints and chron duration estimates from astro-
chronology. As new data become available, the time scale can

be easily updated by repeating the Monte Carlo sampling
procedure.
[37] Using the correlations of polarity chrons to geologic

stage boundaries of Channell et al. [1995, 2010], MHTC12
leads to the following stage boundary ages: Oxfordian/
Kimmeridgian at �151.3 Ma, Kimmeridgian/Tithonian at
148.0 Ma, Jurassic/Cretaceous at 141.7 Ma, Berriasian/
Valanginian at 136.8Ma, Valanginian/Hauterivian at 132.7Ma,
Hauterivian/Barremian at �126 Ma, and Barremian/Aptian
at 121.54 Ma.

7. Conclusions

[38] Geomagnetic polarity time scales (GPTSs) are cur-
rently constructed from magnetic anomaly lineations by
assuming nearly uniform spreading rates over time at one or a
few selected spreading centers. A drawback of this procedure
is that spreading rates at other mid-ocean ridges will vary
more erratically, whereas an optimal GPTS should minimize
the variation of spreading rates at as many spreading centers
as possible. This need is underscored by astrochronology-
based GPTSs obtained for the last few Ma, which result in
smaller spreading rate fluctuations compared to those implied
by GPTSs constructed from marine magnetic anomalies.
[39] We describe a Monte Carlo method that improves

GPTS construction by minimizing spreading rate variations
in a global data set and by also incorporating information on
chron durations estimated from astrochronology. We apply
the method to construct a new version of the Late Jurassic-
Early Cretaceous M-sequence GPTS based on magnetic
lineations from the Western Pacific, North Atlantic, and
Indian Ocean NW of Australia. This MHTC12 GPTS also
accounts for the duration of five polarity chrons (CM0r
through CM3r) established from astrochronology studies of
Cretaceous sedimentary sequences. Absolute ages are con-
strained by two radiometric dates, 121.2 � 0.5 Ma for the
middle of CM0r and 155.3 � 3.4 Ma for the end of CM26n.
While MHTC12 is our preferred time scale, the CM0r date is
debated, and we include in the auxiliary material an alter-
native GPTS (MHTC12–125) constructed with an onset of
CM0r at 125 � 0.5 Ma.
[40] The Monte Carlo sampling procedure generates a

large ensemble of GPTSs that simultaneously agree with
radiometric age constraints, minimize the total variation of
spreading rates, and fit polarity chron durations estimated by
astrochronology. The average and standard deviation of this
ensemble provide a reference time scale and its uncertainty,
respectively. A key feature of this approach is that it
accounts for and propagates the uncertainties of the input
data, which weigh how much each piece of information
constrains the time scale.
[41] MHTC12 reduces the global variability of spreading

rates compared to a previous GPTS based on the Western
Pacific lineations only, fits radiometric date and astro-
chronology data within their uncertainties, and is in broad
agreement with other radiometric dates that were not used
to constrain the solution. An added benefit of this proce-
dure is that it is fully automated, so that the time scale can
be easily updated by repeating the Monte Carlo sampling
with future data additions (magnetic block model distances,
radiometric dates, or polarity chron duration estimates from
astrochronology).

Figure 9. Comparison between ages in the sampled GPTSs
and radiometric dates from Table 1. The dashed line marks
equal ages, the gray region shows the uncertainty ofMHTC12,
and the error bars denote the uncertainties of the measured
dates (uncertainties are � one standard deviation). MHTC12
was constrained only by the two dates shown in black. Radio-
metric dates that were not used in constructing the GPTS,
shown in red, generally agree with MHTC12 given the respec-
tive uncertainties.
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Appendix A: Markov Chain Monte Carlo
Algorithm
A1. Likelihood of Block Model Distance Data

[42] This likelihood function minimizes the total variation
of spreading rates: for block model distances in a vector b,
the likelihood is higher if the total variation of spreading

rates implied by the GPTS in vector m is smaller. The
likelihood is

p b∣mð Þ ¼ const:

� exp

PB
i¼1NiPB
i¼1Ti

XB
i¼1

� 1

2 vmið Þ2
XNi

j¼1

uij � mi

� �2Dtij

" #( )
;

ðA1Þ

Figure 10. Comparison between ages in MHTC12 and ages in (a) CENT94, (b) GTS2004, and (c) TS10.
Age differences on the vertical axes are ages in MHTC12 minus ages in the other time scale. The dashed
line marks zero age difference and the gray region shows the uncertainty in MHTC12 (�one standard
deviation).
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where B is total number of block models, Ni is number of
blocks in i-th block model, Ti is total duration of i-th block
model, as in

Ti ¼
XNi

j¼1

Dtij; ðA2Þ

where Dtij is duration of j-th chron of the i-th block model
(from GPTS in m), uij is spreading rate of j-th block in i-th
block model, as in

uij ¼ Dxij
Dtij

; ðA3Þ

where Dxij is width of j-th block in i-th block model (from
distances in b), v is coefficient of variation (CV) of
spreading rates (see the text and Appendix B), and mi is
average spreading rate in i-th block model, weighted by
chron duration as in

mi ¼
1

Ti

XNi

j¼1

uijDtij ¼ 1

Ti

XNi

j¼1

Dxij: ðA4Þ

The likelihood in (A1) is weighted by polarity chron dura-
tion, so that a given difference from the average spreading
rate in a longer chron decreases the likelihood more than the
same difference in a shorter chron.

A2. Likelihood of Chron Duration Data

[43] This likelihood function is higher if the polarity chron
durations implied by the GPTS in vector m are closer to the
chron duration estimates in a vector c. The likelihood is

p c jmð Þ ¼ const:� exp �
XC
j¼1

cj �Dtj
� �2

2s2
j

" #
; ðA5Þ

where C is total number of chron durations from astro-
chronology, cj is mean of j-th chron duration (from astro-
chronology data in c), sj is standard deviation of j-th chron
duration, andDtj is duration of j-th chron (from GPTS inm).

A3. MCMC Sampling Algorithm

[44] The MCMC algorithm used to generate samples from
the posterior distribution of GPTS vectors m in equation (1)
starts from a random initial GPTS constructed in two steps.
First, a random GPTS vector m is constructed by concatenat-
ing the desired number of chron durations sampled from their
prior distribution (see Section 4). The chron ages inm are then
rescaled to match values for the absolute dates that were
sampled from the distributions that define the uncertainty of
radiometric dates. Sampling then proceeds as follows:
[45] 1. Generate a candidate GPTS in a vectormcand by (a)

picking at random a chron in m and perturbing its duration
(these perturbations are designed to sample the prior distri-
bution of chron durations) and (b) rescaling the ages inmcand

to match dates sampled from the distribution of radiometric
dates.

[46] 2. Accept the candidate GPTS with a probability
equal to the ratio of the likelihoods as in

a ¼ min 1;
p b∣mcandð Þ
p b∣mð Þ � p c∣mcandð Þ

p c∣mð Þ
� �

: ðA6Þ

In practice, generate a random number r from a uniform
distribution between 0 and 1. If r < a, set m = mcand;
otherwise, leave m unchanged. Note that a depends only
on the ratio of the likelihoods, so that the constants in
equations (A1) and (A5) are irrelevant.
[47] 3. Every 100 iterations, save the current value of m.
[48] 4. Repeat from step 1.
[49] The ensemble used to obtain the final GPTS (Figure 5,

Table 3, and supplementary material) was obtained by com-
bining 500 independent chains started from different random
initial GPTSs. This strategy ensures that the starting point does
not affect the solution. The final variability of the sampled
GPTSs is much less than the differences between the starting
GPTSs, indicating that the chains were not trapped in sec-
ondary modes and that they converged to sample the global
mode of the posterior distribution. The histograms of sampled
chron ages and durations (Figures 7 and 8) do not show any
sign of multimodality. Each chain was run for 50,000 itera-
tions, and to safely discard the burn-in interval, the first 10,000
iterations in each chain were ignored. The sampling algorithm
saves only one GPTS every 100 iterations (see step 4 above).
This is done to reduce the redundancy of the samples: con-
secutive samples are very similar because only one chron is
changed for each iteration. The interval between saved sam-
ples is close to the number of chrons in the M-sequence (102).
The final ensemble consisted of 200,000 GPTSs. The con-
vergence of the simulation was assessed by comparing the
statistics of the two halves of the ensemble. The average ages
of the polarity chron boundaries in each half were very close,
with differences that were at most �1% of the standard devi-
ation. Again, this close comparison confirms that the inde-
pendent chains were sampling the global mode of the posterior
distribution.

Appendix B: CV of Spreading Rates

[50] The likelihood of block model distance data, which
quantifies the total variation of spreading rates (equation (A1)),
needs a value for v, the coefficient of variation (CV) of
spreading rates. To estimate an expected CV in the set of
block model distances used here, we consider three reasons
for measured spreading rates to depart from a constant value.
[51] Errors in measured model block widths. The spreading

rate calculated in a given polarity block equals the block width
divided by the duration of the polarity chron. For a given chron
duration, an error in the measured block width directly trans-
lates into an error in the calculated spreading rate, so that the
CV of the spreading rates equals the CV of the block widths.
We use here the polarity block distance data published by
TS10, who estimated block model uncertainties by comparing
multiple magnetic anomaly profiles. TS10 report standard
deviations of the polarity block widths in the Western Pacific
as 2–36 km (average 11 km) for Hawaii, 1–36 km (14 km) for
the Japanese, and 2–33 km (9 km) for the Phoenix model. The
average standard deviations are large compared to the average
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block widths (19.4, 19.7, and 11.2 km in the Hawaii, Japanese,
and Phoenix block models, respectively), and these averages
are likely biased by a few large standard deviations. We
obtained an alternative estimate of the standard deviations of
the block widths from the standard deviations of the block
model distances listed by TS10. To deduce the errors in block
widths from those of the distances, consider a simple case
where the blocks are referred to a common origin so that the
distance to a polarity block boundary is the sum of all the
preceding block widths. Assuming that errors in block widths
are uncorrelated, the variances of the distances are expected to
grow from the origin, and the average increase in variance per
block is the average variance of block widths. In the TS10
data, the expected increase of variance is not observed in the
Western Pacific because several intervals with different ori-
gins were used to construct composite block models. In the
Atlantic Keathley lineations, however, there is a clear linear
increase in the variance of the distances that averages 31.6 km2

per block, giving a standard deviation for the block widths of
5.6 km. When divided by the average block width of 12 km,
this gives a CV of 0.47 for the block widths and for the
spreading rates estimated in this block model. Using the same
standard deviation for the block widths in the Western Pacific
Hawaii lineations (average block width 19.4 km) gives a CV
of 0.29 for the spreading rates. The average of the Atlantic and
Pacific CVs is 0.38.
[52] Asymmetric spreading. In block models constructed

from a single ridge flank, asymmetric spreading during a
polarity chron will result in a variation of measured spread-
ing rate. The Keathley and Canary block models are from
conjugate ridge flanks, and averaging their distances would
remove the effect of asymmetric spreading. As all other
block models in our data set are from a single ridge flank,
however, we could not eliminate this cause of spreading rate
variability and opted not to average the Keathley and Canary
block model distances. A histogram of spreading asymme-
tries from the global survey of Müller et al. [2008] gives a
CV of 10/50 = 0.2 for spreading rate fluctuations due to
asymmetries.
[53] Long-term variations in spreading rate. The best-

studied C-sequence magnetic anomaly corridor in the South
Atlantic shows long-term variations in spreading rate [Cande
and Kent, 1995]. This long-term variation, as summarized in
Ogg and Smith [2004, Figure 5.3], is consistent with a CV of
5/22.5 = 0.22.
[54] The total CV of spreading rates due to these three

causes is the square root of the sum of the variances and
comes to 0.48, or about 50%.
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