12 research outputs found

    Research on the biological mechanism and potential application of CEMIP

    Get PDF
    Cell migration–inducing protein (CEMIP), also known as KIAA1199 and hyaluronan-binding protein involved in hyaluronan depolymerization, is a new member of the hyaluronidase family that degrades hyaluronic acid (HA) and remodels the extracellular matrix. In recent years, some studies have reported that CEMIP can promote the proliferation, invasion, and adhesion of various tumor cells and can play an important role in bacterial infection and arthritis. This review focuses on the pathological mechanism of CEMIP in a variety of diseases and expounds the function of CEMIP from the aspects of inhibiting cell apoptosis, promoting HA degradation, inducing inflammatory responses and related phosphorylation, adjusting cellular microenvironment, and regulating tissue fibrosis. The diagnosis and treatment strategies targeting CEMIP are also summarized. The various functions of CEMIP show its great potential application value

    Metabolomics analysis of serum in a rat heroin self-administration model undergoing reinforcement based on 1H-nuclear magnetic resonance spectra

    No full text
    Abstract Background Understanding the process of relapse to abused drugs and ultimately developing treatments that can reduce the incidence of relapse remains the primary goal for the study of substance dependence. Therefore, exploring the metabolite characteristics during the relapse stage is valuable. Methods A heroin self-administered rat model was employed, and analysis of the 1H-nuclear magnetic resonance-based metabolomics was performed to investigate the characteristic metabolite profile upon reintroduction to the drug after abstinence. Results Sixteen metabolites in the serum of rats, including phospholipids, intermediates in TCA (Tricarboxylic Acid Cycle) cycle, keto bodies, and precursors for neurotransmitters, underwent a significant change in the reinstatement stage compared with those in the control group. In particular, energy production was greatly disturbed as evidenced by different aspects such as an increase in glucose and decrease in intermediates of glycolysis and the TCA cycle. The finding that the level of 3-hydroxybutyrate and acetoacetate increased significantly suggested that energy production was activated from fatty acids. The concentration of phenylalanine, glutamine, and choline, the precursors of major neurotransmitters, increased during the reinstatement stage which indicated that an alteration in neurotransmitters in the brain might occur along with the disturbance in substrate supply in the circulatory system. Conclusions Heroin reinforcement resulted in impaired energy production via different pathways, including glycolysis, the TCA cycle, keto body metabolism, etc. A disturbance in the substrate supply in the circulatory system may partly explain heroin toxicity in the central nervous system. These findings provide new insight into the mechanism underlying the relapse to heroin use

    Effect of Functional Superplasticizers on Concrete Strength and Pore Structure

    No full text
    The current work investigates the fluidity and the loss of the flow rate of cement paste and mortar over time, as well as the pore structure and compressive strength of concrete and mortar in the presence of functional polycarboxylic acid high-performance water-reducing agents. The hydration rate, hydration products, and pore structure of the concrete containing different functional polycarboxylic acid superplasticizers were analyzed by means of mercury intrusion test, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results show that water-reducing agent Z significantly improves the pore structure of concrete and further compacts the structure of concrete and mortar, thereby improving the compressive strength of concrete. Moreover, the shorter side chains and ester functional groups in the structure of water-reducing agent H can slow down cement hydration rate, which lowers the early strength of mortar; nevertheless, at later stages, the pore structure of the concrete and mortar including superplasticizer H is less different from that of the concrete and mortar containing polycarboxylic acid water-reducing agents. Water-reducing agent J performs best but has a weaker effect on the pore structure of concrete and mortar compared to superplasticizer Z; it is also better than naphthalene-based water-reducing agents

    Retrograde Labeling of Different Distribution Features of DRG P2X2 and P2X3 Receptors in a Neuropathic Pain Rat Model

    No full text
    The distributions of P2X subtypes during peripheral neuropathic pain conditions and their differential roles are not fully understood. To explore these characteristics, the lumbosacral dorsal root ganglion (DRG) in the chronic constriction injury (CCI) sciatic nerve rat model was studied. Retrograde trace labeling combined with immunofluorescence technology was applied to analyze the distribution of neuropathic nociceptive P2X1-6 receptors. Our results suggest that Fluoro-Gold (FG) retrograde trace labeling is an efficient method for studying lumbosacral DRG neurons in the CCI rat model, especially when the DRG neurons are divided into small, medium, and large subgroups. We found that neuropathic nociceptive lumbosacral DRG neurons (i.e., FG-positive cells) were significantly increased in medium DRG neurons, while they declined in the large DRG neurons in the CCI group. P2X3 receptors were markedly upregulated in medium while P2X2 receptors were significantly decreased in small FG-positive DRG neurons. There were no significant changes in other P2X receptors (including P2X1, P2X4, P2X5, and P2X6). We anticipate that P2X receptors modulate nociceptive sensitivity primarily through P2X3 subtypes that are upregulated in medium neuropathic nociceptive DRG neurons and/or via the downregulation of P2X2 cells in neuropathic nociceptive small DRG neurons

    Effect of Functional Polycarboxylic Acid Superplasticizers on Mechanical and Rheological Properties of Cement Paste and Mortar

    No full text
    Modern engineering practices require that polycarboxylic acid high-performance superplasticizers have good adaptability to various environments and materials, which indicates the importance of producing functional polycarboxylic acid superplasticizers with a variety of functions. Therefore, in this work, a functional polycarboxylic acid high-performance water-reducing agent, named superplasticizer J, a sustained-release functional polycarboxylic acid high-performance water-reducing agent, named superplasticizer H, and an early-strength functional polycarboxylic acid high-performance water-reducing agent, named superplasticizer Z, are synthesized. The produced superplasticizers were characterized by employing X-ray diffraction (XRD), thermogravimetry, mercury intrusion porosimetry, and rheometry and by measuring heat of cement hydration. The impacts of the functional polycarboxylic acid superplasticizers on the mechanical properties, rheological properties, and cement hydration of the cement pastes and mortars were investigated. The results show that the prepared functional polycarboxylic acid superplasticizers fulfill water-reducing and cement dispersion functions, can improve the fluidity and plasticity of the mortar, and have a greater effect on reducing shear yield stress and increasing plastic viscosity compared to the naphthalene-based superplasticizers. The sustained-release functional polycarboxylic acid high-performance superplasticizer H performs an excellent slump retention function, and the early-strength functional polycarboxylic acid high-performance superplasticizer Z has a significant effect on improving the early and late strength of the mortar
    corecore