456 research outputs found

    Trends and emissions of six perfluorocarbons in the Northern Hemisphere and Southern Hemisphere

    Get PDF
    Perfluorocarbons (PFCs) are potent greenhouse gases with global warming potentials up to several thousand times greater than CO2 on a 100-year time horizon. The lack of any significant sinks for PFCs means that they have long atmospheric lifetimes of the order of thousands of years. Anthropogenic production is thought to be the only source for most PFCs. Here we report an update on the global atmospheric abundances of the following PFCs, most of which have for the first time been analytically separated according to their isomers: c-octafluorobutane (c-C4F8), n-decafluorobutane (n-C4F10), n-dodecafluoropentane (n-C5F12), n-tetradecafluorohexane (n-C6F14), and n-hexadecafluoroheptane (n-C7F16). Additionally, we report the first data set on the atmospheric mixing ratios of perfluoro-2-methylpentane (i-C6F14). The existence and significance of PFC isomers have not been reported before, due to the analytical challenges of separating them. The time series spans a period from 1978 to the present. Several data sets are used to investigate temporal and spatial trends of these PFCs: time series of air samples collected at Cape Grim, Australia, from 1978 to the start of 2018; a time series of air samples collected between July 2015 and April 2017 at Tacolneston, UK; and intensive campaign-based sampling collections from Taiwan. Although the remote “background” Southern Hemispheric Cape Grim time series indicates that recent growth rates of most of these PFCs are lower than in the 1990s, we continue to see significantly increasing mixing ratios that are between 6 % and 27 % higher by the end of 2017 compared to abundances measured in 2010. Air samples from Tacolneston show a positive offset in PFC mixing ratios compared to the Southern Hemisphere baseline. The highest mixing ratios and variability are seen in air samples from Taiwan, which is therefore likely situated much closer to PFC sources, confirming predominantly Northern Hemispheric emissions for most PFCs. Even though these PFCs occur in the atmosphere at levels of parts per trillion molar or less, their total cumulative global emissions translate into 833 million metric tonnes of CO2 equivalent by the end of 2017, 23 % of which has been emitted since 2010. Almost two-thirds of the CO2 equivalent emissions within the last decade are attributable to c-C4F8, which currently also has the highest emission rates that continue to grow. Sources of all PFCs covered in this work remain poorly constrained and reported emissions in global databases do not account for the abundances found in the atmosphere

    Investigation of East Asian emissions of CFC-11 using atmospheric observations in Taiwan

    Get PDF
    Recent findings of an unexpected slowdown in the decline of CFC-11 mixing ratios in the atmosphere have led to the conclusion that global CFC-11 emissions have increased over the past decade and have been attributed in part to eastern China. This study independently assesses these findings by evaluating enhancements of CFC-11 mixing ratios in air samples collected in Taiwan between 2014 and 2018. Using the NAME (Numerical Atmospheric Modeling Environment) particle dispersion model, we find the likely source of the enhanced CFC-11 observed in Taiwan to be East China. Other halogenated trace gases were also measured, and there were positive interspecies correlations between CFC-11 and CHCl3, CCl4, HCFC-141b, HCFC-142b, CH2Cl2, and HCFC-22, indicating co-location of the emissions of these compounds. These correlations in combination with published emission estimates of CH2Cl2 and HCFC-22 from China, and of CHCl3 and CCl4 from eastern China, are used to estimate CFC-11 emissions. Within the uncertainties, these estimates do not differ for eastern China and the whole of China, so we combine them to derive a mean estimate that we term as being from "(eastern) China". For 2014-2018, we estimate an emission of 19 ± 5 Gg year-1 (gigagrams per year) of CFC-11 from (eastern) China, approximately one-quarter of global emissions. Comparing this to previously reported CFC-11 emissions estimated for earlier years, we estimate CFC-11 emissions from (eastern) China to have increased by 7 ± 5 Gg year-1 from the 2008-2011 average to the 2014-2018 average, which is 50 ± 40% of the estimated increase in global CFC-11 emissions and is consistent with the emission increases attributed to this region in an earlier study

    Abrupt reversal in emissions and atmospheric abundance of HCFC-133a (CF3CH2Cl)

    Get PDF
    Hydrochlorofluorocarbon HCFC-133a (CF3CH2Cl) is an anthropogenic compound whose consumption for emissive use is restricted under the Montreal Protocol. A recent study showed rapidly increasing atmospheric abundances and emissions. We report that, following this rise, the at- mospheric abundance and emissions have declined sharply in the past three years. We find a Northern Hemisphere HCFC-133a increase from 0.13 ppt (dry air mole fraction in parts-per-trillion) in 2000 to 0.50 ppt in 2012–mid-2013 followed by an abrupt reversal to 0.44 ppt by early 2015. Global emissions derived from these observations peaked at 3.1 kt in 2011, followed by a rapid decline of 0.5 kt yr−2 to 1.5 kt yr−1 in 2014. Sporadic HCFC-133a pollution events are detected in Europe from our high-resolution HCFC-133a records at three European stations, and in Asia from sam- ples collected in Taiwan. European emissions are estimated to be <0.1 kt yr−1 although emission hotspots were identi- fied in France

    Enabling the ability of Li storage at high rate as anodes by utilizing natural rice husks-based hierarchically porous SiO2/N-doped carbon composites

    Get PDF
    One of the greatest challenges in developing SiO 2/C composites as anode materials in lithium ion batteries (LIBs) is to improve the ability of Li storage at high rate over long-term cycles. Herein, biomass rice husks-based hierarchically porous SiO 2/N-doped carbon composites (BM-RH-SiO 2/NC) were prepared by ball mill and thermal treatment. BM-RH-SiO 2/NC can still retain a reversible capacity of 556 mAh g −1 over 1000 cycles at a high current of 1.0 A g −1. At 5.0 A g −1 the capacity is kept as high as 402 mAh g −1. This impressively long-term cyclic performance and high-rate capability of BM-RH-SiO 2/NC can be ascribed to the synergetic effect between the natural SiO 2 nanoparticles (< 50 nm) and the NC layer. The coating NC layer can not only effectively mitigate the volume strain during charge-discharge process to offer stably cyclic performance but also improve the electrical conductivity. Furthermore, the hierarchical porosity and better electrolyte wettability offer the rapid Li + diffusion and electron transfer, which enhance the pseudocapacitive behavior of whole electrode material and then guarantee fast electrochemical kinetics. Importantly, the unique Li-storage mechanism of active SiO 2 in BM-RH-SiO 2/NC composite was formed and found, which further validates the improved electrochemical capability

    An Overview of Regional Experiments on Biomass Burning Aerosols and Related Pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS

    Get PDF
    By modulating the Earth-atmosphere energy, hydrological and biogeochemical cycles, and affecting regional-to-global weather and climate, biomass burning is recognized as one of the major factors affecting the global carbon cycle. However, few comprehensive and wide-ranging experiments have been conducted to characterize biomass-burning pollutants in Southeast Asia (SEA) or assess their regional impact on meteorology, the hydrological cycle, the radiative budget, or climate change. Recently, BASEASIA (Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment) and the 7-SEAS (7- South-East Asian Studies) Dongsha Experiment were conducted during the spring seasons of 2006 and 2010 in northern SEA, respectively, to characterize the chemical, physical, and radiative properties of biomass-burning emissions near the source regions, and assess their effects. This paper provides an overview of results from these two campaigns and related studies collected in this special issue, entitled Observation, modeling and impact studies of biomass burning and pollution in the SE Asian Environment. This volume includes 28 papers, which provide a synopsis of the experiments, regional weatherclimate, chemical characterization of biomass-burning aerosols and related pollutants in source and sink regions, the spatial distribution of air toxics (atmospheric mercury and dioxins) in source and remote areas, a characterization of aerosol physical, optical, and radiative properties, as well as modeling and impact studies. These studies, taken together, provide the first relatively complete dataset of aerosol chemistry and physical observations conducted in the sourcesink region in the northern SEA, with particular emphasis on the marine boundary layer and lower free troposphere (LFT). The data, analysis and modeling included in these papers advance our present knowledge of source characterization of biomass-burning pollutants near the source regions as well as the physical and chemical processes along transport pathways. In addition, we raise key questions to be addressed by a coming deployment during springtime 2013 in northern SEA, named 7-SEASBASELInE (Biomass-burning Aerosols Stratocumulus Environment: Lifecycles and Interactions Experiment). This campaign will include a synergistic approach for further exploring many key atmospheric processes (e.g., complex aerosol-cloud interactions) and impacts of biomass burning on the surface-atmosphere energy budgets during the lifecycles of biomass burning emissions

    Observation of the electromagnetic doubly OZI-suppressed decay J/ψϕπ0J/\psi \rightarrow \phi \pi^{0}

    Get PDF
    Using a sample of 1.311.31 billion J/ψJ/\psi events accumulated with the BESIII detector at the BEPCII collider, we report the observation of the decay J/ψϕπ0J/\psi \rightarrow \phi\pi^{0}, which is the first evidence for a doubly Okubo-Zweig-Iizuka suppressed electromagnetic J/ψJ/\psi decay. A clear structure is observed in the K+KK^{+} K^{-} mass spectrum around 1.02 GeV/c2c^2, which can be attributed to interference between J/ψϕπ0J/\psi \rightarrow \phi\pi^{0} and J/ψK+Kπ0J/\psi \rightarrow K^{+}K^{-}\pi^{0} decays. Due to this interference, two possible solutions are found. The corresponding measured values of the branching fraction of J/ψϕπ0J/\psi \to \phi\pi^{0} are [2.94±0.16(stat.)±0.16(syst.)]×106[2.94 \pm 0.16\text{(stat.)} \pm 0.16\text{(syst.)}] \times 10^{-6} and [1.24±0.33(stat.)±0.30(syst.)]×107[1.24 \pm 0.33\text{(stat.)} \pm 0.30\text{(syst.)}] \times 10^{-7}.Comment: 7 pages, 4 figures, published in Phys. Rev.
    corecore