3,865 research outputs found

    A conserved BDNF, glutamate- and GABA-enriched gene module related to human depression identified by coexpression meta-analysis and DNA variant genome-wide association studies

    Get PDF
    Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression, but not for other diseases. In support of the superior discriminative power of this novel approach, we observed no significant enrichment for GWAS-related genes in coexpression modules extracted from single studies or in meta-modules using gene expression data from non-psychiatric control subjects. Genes in the identified module encode proteins implicated in neuronal signaling and structure, including glutamate metabotropic receptors (GRM1, GRM7), GABA receptors (GABRA2, GABRA4), and neurotrophic and development-related proteins [BDNF, reelin (RELN), Ephrin receptors (EPHA3, EPHA5)]. These results are consistent with the current understanding of molecular mechanisms of MDD and provide a set of putative interacting molecular partners, potentially reflecting components of a functional module across cells and biological pathways that are synchronously recruited in MDD, other brain disorders and MDD-related illnesses. Collectively, this study demonstrates the importance of integrating transcriptome data, gene coexpression modules and GWAS results for providing novel and complementary approaches to investigate the molecular pathology of MDD and other complex brain disorders. © 2014 Chang et al

    Discovering monotonic stemness marker genes from time-series stem cell microarray data

    Get PDF
    © 2015 Wang et al.; licensee BioMed Central Ltd. Background: Identification of genes with ascending or descending monotonic expression patterns over time or stages of stem cells is an important issue in time-series microarray data analysis. We propose a method named Monotonic Feature Selector (MFSelector) based on a concept of total discriminating error (DEtotal) to identify monotonic genes. MFSelector considers various time stages in stage order (i.e., Stage One vs. other stages, Stages One and Two vs. remaining stages and so on) and computes DEtotal of each gene. MFSelector can successfully identify genes with monotonic characteristics.Results: We have demonstrated the effectiveness of MFSelector on two synthetic data sets and two stem cell differentiation data sets: embryonic stem cell neurogenesis (ESCN) and embryonic stem cell vasculogenesis (ESCV) data sets. We have also performed extensive quantitative comparisons of the three monotonic gene selection approaches. Some of the monotonic marker genes such as OCT4, NANOG, BLBP, discovered from the ESCN dataset exhibit consistent behavior with that reported in other studies. The role of monotonic genes found by MFSelector in either stemness or differentiation is validated using information obtained from Gene Ontology analysis and other literature. We justify and demonstrate that descending genes are involved in the proliferation or self-renewal activity of stem cells, while ascending genes are involved in differentiation of stem cells into variant cell lineages.Conclusions: We have developed a novel system, easy to use even with no pre-existing knowledge, to identify gene sets with monotonic expression patterns in multi-stage as well as in time-series genomics matrices. The case studies on ESCN and ESCV have helped to get a better understanding of stemness and differentiation. The novel monotonic marker genes discovered from a data set are found to exhibit consistent behavior in another independent data set, demonstrating the utility of the proposed method. The MFSelector R function and data sets can be downloaded from: http://microarray.ym.edu.tw/tools/MFSelector/

    IDO1 (indoleamine 2,3-dioxygenase 1)

    Get PDF
    Review on IDO1 (indoleamine 2,3-dioxygenase 1), with data on DNA, on the protein encoded, and where the gene is implicated

    Meta-analysis methods for combining multiple expression profiles: Comparisons, statistical characterization and an application guideline

    Get PDF
    Background: As high-throughput genomic technologies become accurate and affordable, an increasing number of data sets have been accumulated in the public domain and genomic information integration and meta-analysis have become routine in biomedical research. In this paper, we focus on microarray meta-analysis, where multiple microarray studies with relevant biological hypotheses are combined in order to improve candidate marker detection. Many methods have been developed and applied in the literature, but their performance and properties have only been minimally investigated. There is currently no clear conclusion or guideline as to the proper choice of a meta-analysis method given an application; the decision essentially requires both statistical and biological considerations.Results: We performed 12 microarray meta-analysis methods for combining multiple simulated expression profiles, and such methods can be categorized for different hypothesis setting purposes: (1) HSA: DE genes with non-zero effect sizes in all studies, (2) HSB: DE genes with non-zero effect sizes in one or more studies and (3) HSr: DE gene with non-zero effect in "majority"of studies. We then performed a comprehensive comparative analysis through six large-scale real applications using four quantitative statistical evaluation criteria: detection capability, biological association, stability and robustness. We elucidated hypothesis settings behind the methods and further apply multi-dimensional scaling (MDS) and an entropy measure to characterize the meta-analysis methods and data structure, respectively.Conclusions: The aggregated results from the simulation study categorized the 12 methods into three hypothesis settings (HSA, HSB, and HSr). Evaluation in real data and results from MDS and entropy analyses provided an insightful and practical guideline to the choice of the most suitable method in a given application. All source files for simulation and real data are available on the author's publication website. © 2013 Chang et al.; licensee BioMed Central Ltd

    IDO2 (indoleamine 2,3-dioxygenase 2)

    Get PDF
    Review on IDO2 (indoleamine 2,3-dioxygenase 2), with data on DNA, on the protein encoded, and where the gene is implicated

    Deep level defect in Si-implanted GaN n +-p junction

    Get PDF
    The results of deep level transient spectroscopy (DLTS) experiments on GaN junctions, fabricated by silicon implantation, were discussed. An unusual appearance of a minority peak in the majority carrier DLTS spectra within the interfacial region of the junctions was observed. The presence of this minority peak suggested a high concentration of a deep level defect within the interfacial region.published_or_final_versio

    Hsp20 Functions as a Novel Cardiokine in Promoting Angiogenesis via Activation of VEGFR2

    Get PDF
    Heat shock proteins (Hsps) are well appreciated as intrinsic protectors of cardiomyocytes against numerous stresses. Recent studies have indicated that Hsp20 (HspB6), a small heat shock protein, was increased in blood from cardiomyopathic hamsters. However, the exact source of the increased circulating Hsp20 and its potential role remain obscure. In this study, we observed that the circulating Hsp20 was increased in a transgenic mouse model with cardiac-specific overexpression of Hsp20, compared with wild-type mice, suggesting its origin from cardiomyocytes. Consistently, culture media harvested from Hsp20-overexpressing cardiomyocytes by Ad.Hsp20 infection contained an increased amount of Hsp20, compared to control media. Furthermore, we identified that Hsp20 was secreted through exosomes, independent of the endoplasmic reticulum-Golgi pathway. To investigate whether extracellular Hsp20 promotes angiogenesis, we treated human umbilical vein endothelial cells (HUVECs) with recombinant human Hsp20 protein, and observed that Hsp20 dose-dependently promoted HUVEC proliferation, migration and tube formation. Moreover, a protein binding assay and immunostaining revealed an interaction between Hsp20 and VEGFR2. Accordingly, stimulatory effects of Hsp20 on HUVECs were blocked by a VEGFR2 neutralizing antibody and CBO-P11 (a VEGFR inhibitor). These in vitro data are consistent with the in vivo findings that capillary density was significantly enhanced in Hsp20-overexpressing hearts, compared to non-transgenic hearts. Collectively, our findings demonstrate that Hsp20 serves as a novel cardiokine in regulating myocardial angiogenesis through activation of the VEGFR signaling cascade

    Orexinergic Input to Dopaminergic Neurons of the Human Ventral Tegmental Area

    Get PDF
    The mesolimbic reward pathway arising from dopaminergic (DA) neurons of the ventral tegmental area (VTA) has been strongly implicated in reward processing and drug abuse. In rodents, behaviors associated with this projection are profoundly influenced by an orexinergic input from the lateral hypothalamus to the VTA. Because the existence and significance of an analogous orexigenic regulatory mechanism acting in the human VTA have been elusive, here we addressed the possibility that orexinergic neurons provide direct input to DA neurons of the human VTA. Dual-label immunohistochemistry was used and orexinergic projections to the VTA and to DA neurons of the neighboring substantia nigra (SN) were analyzed comparatively in adult male humans and rats. Orexin B-immunoreactive (IR) axons apposed to tyrosine hydroxylase (TH)-IR DA and to non-DA neurons were scarce in the VTA and SN of both species. In the VTA, 15.062.8% of TH-IR perikarya in humans and 3.260.3% in rats received orexin B-IR afferent contacts. On average, 0.2460.05 and 0.0560.005 orexinergic appositions per TH-IR perikaryon were detected in humans and rats, respectively. The majority(86–88%) of randomly encountered orexinergic contacts targeted the dendritic compartment of DA neurons. Finally, DA neurons of the SN also received orexinergic innervation in both species. Based on the observation of five times heavierorexinergic input to TH-IR neurons of the human, compared with the rat, VTA, we propose that orexinergic mechanism acting in the VTA may play just as important roles in reward processing and drug abuse in humans, as already established well in rodents
    corecore