37 research outputs found

    Realism and Field of View Affect Presence in VR but Not the Way You Think

    Get PDF
    Presence is one of the most studied and most important variables in immersive virtual reality (VR) and it influences the effectiveness of many VR applications. Separate bodies of research indicate that presence is determined by (1) technical factors such as the visual realism of a virtual environment (VE) and the field of view (FoV), and (2) human factors such as emotions and agency. However, it remains unknown how technical and human factors may interact in the presence formation process. We conducted a user study (n=360) to investigate the effects of visual realism (high/low), FoV (high/low), emotions (focusing on fear) and agency (yes/no) on presence. Counter to previous assumptions, technical factors did not affect presence directly but were moderated through human factors. We propose TAP-Fear, a structural equation model that describes how design decisions, technical factors and human factors combine and interact in the formation of presence

    SiC polytypes and doping nature effects on electrical properties of ZnO-SiC Schottky diodes

    Get PDF
    Electrical properties of ZnO/SiC Schottky diodes with two SiC polytypes and N and P doping are investigated. Characterization was performed through I–V and C–V–f measurements. Schottky barrier height (Φb), ideality factor (n), and series resistance (Rs) were extracted from forward I–V characteristics. (Φb), carrier’s concentrations (Nd-Na) and (Rs) frequency dependence were extracted from C–V–f characteristics. The extracted n values suggest that current transport is dominated by interface generation-recombination and/or barrier tunneling mechanisms. When changing SiC polytypes, the rectifying ratio of ZnO/n-4HSiC is found to be twice that of ZnO/n-6HSiC. A change in doping nature gave a leakage current ratio of 40 between ZnO/p-4HSiC and ZnO/n- 4HSiC. These results indicate that ZnO/p-4HSiC diodes have a complex current transport compared to diodes on n-type SiC. From I-V measurements, barrier height values are 0.63eV, 0.65eV and 0.71 eV for heterojunction grown on n-6HSiC, n-4HSiC and p-4HSiC, respectively. C-V measurements gave higher values indicating the importance of interface density of states. Nss values at 1MHz frequency are 4.54×1011 eV-1 cm-2, 3×1012 eV-1 cm-2 and 8.13×1010 eV-1 cm-2 for ZnO/n-6HSiC, ZnO/n-4HSiC and ZnO/p-4HSiC, respectively. Results indicate the importance of SiC polytypes and its doping natur

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Evaluation of the prognostic value of 2005 St Gallen risk categories for operated breast cancers in Hong Kong

    No full text
    Incorporating various new and conventional risk factors, the 2005 St Gallen risk categorization is a potentially useful prognostic tool for breast cancers. We conducted a retrospective study to evaluate its application in Hong Kong. Of the 902 included female breast cancers with median follow-up of 5.4 years, 7%, 63% and 30% patients were classified as low-, intermediate- and high-risk categories, respectively. Their corresponding 5-year distant disease-free survivals (DDFS) were 100%, 92% and 72%, respectively (p<0.00005). In the intermediate-risk category, node-positive patients had marginally inferior 5-year DDFS than node-negative patients (89% vs. 93%, p=0.0551). In the high-risk category, patients having HER2 overexpressed tumors and 1-3 positive nodes had significantly better DDFS than other patients with ≥4 positive nodes (89% vs. 65%, p=0.0001). Overall, the 2005 St Gallen risk categorization had high prognostic value. However, the impact of HER2 overexpression might be affected by reproducibility of HER2 tests. © 2007 Elsevier Ltd. All rights reserved.link_to_subscribed_fulltex

    Planktic-benthic foraminifera ratio (%P) as a tool for the reconstruction of paleobathymetry and geohazard: A case study from Taiwan

    No full text
    The calcite tests of foraminifera are an important biogenic component of marine sediments. The abundance of foraminiferal tests in marine sediments broadly varies with bathymetry, thus has been used to reconstruct paleobathymetry. It is also promising as a tracer for downslope transport triggered by earthquakes and typhoons, especially if the displaced material from shallow locality contrasts strongly with the background autochthonous sediments in terms of foraminiferal abundance, such as the ratio of benthic and planktic foraminifera termed %P. However, its applicability in sediments off Taiwan has not been assessed. Taiwan is located in the path of typhoons and at tectonic plate margins, where typhoons and earthquakes may trigger submarine geohazards. This, combined with the fact that its seafloor spans a large bathymetric range, render this region an ideal natural laboratory to evaluate the applicability of %P as a proxy for tracing submarine geohazards and bathymetry. Here we report foraminiferal abundance, %P, grain size and elemental data from 148 surface sediment samples off 6 sectors off Taiwan, namely Southern Okinawa Trough, Hoping-Nanao-Hateruma Basins, Taitung-Hualien, Hengchun Ridge, Gaoping, and Changyun Sand Ridge. Of all the hydrographic and sedimentological parameters assessed, seafloor bathymetry is the major driver of foraminiferal abundance and %P in these regions. Notably, several data points deviate from the regional %P-water depth relationship. Based on sedimentological parameters and previous studies, we posit that these outliers may have to do with local sedimentation setting. These processes include earthquake-induced sediment transport via submarine canyon in the Southern Okinawa Trough, typhoon-triggered sediment flushing in Gaoping Canyon, cross-shelf and northward advection of planktic foraminifera on the Gaoping shelf, and carbonate dissolution in the deep Hateruma Basin. Off Taiwan, the %P value in sediments increases exponentially with bathymetry (R2 = 0.72, n = 81), and agrees well with the global calibration obtained by combining data from several regions of the global ocean (R2 = 0.86, n = 1004). The regional %P-water depth relationship may be useful for reconstructing paleobathymetry here, albeit with an uncertainty in the range of 14–1600 m. The uncertainty increases with water depth. Our results also highlight the potential of the %P index as a tracer for downslope transport and lateral advection in the water column. In conclusion, the downcore application of %P has the potential to reconstruct past geohazard events while also identifying autochthonous sediment sequences that are suitable for paleoceanographic reconstruction
    corecore