10 research outputs found

    Investigation of Salt Tolerance Mechanisms across a Root Developmental Gradient in Almond Rootstocks

    Get PDF
    The intensive use of groundwater in agriculture under the current climate conditions leads to acceleration of soil salinization. Given that almond is a salt-sensitive crop, selection of salt-tolerant rootstocks can help maintain productivity under salinity stress. Selection for tolerant rootstocks at an early growth stage can reduce the investment of time and resources. However, salinity-sensitive markers and salinity tolerance mechanisms of almond species to assist this selection process are largely unknown. We established a microscopy-based approach to investigate mechanisms of stress tolerance in and identified cellular, root anatomical, and molecular traits associated with rootstocks exhibiting salt tolerance. We characterized three almond rootstocks: Empyrean-1 (E1), Controller-5 (C5), and Krymsk-86 (K86). Based on cellular and molecular evidence, our results show that E1 has a higher capacity for salt exclusion by a combination of upregulating ion transporter expression and enhanced deposition of suberin and lignin in the root apoplastic barriers, exodermis, and endodermis, in response to salt stress. Expression analyses revealed differential regulation of cation transporters, stress signaling, and biopolymer synthesis genes in the different rootstocks. This foundational study reveals the mechanisms of salinity tolerance in almond rootstocks from cellular and structural perspectives across a root developmental gradient and provides insights for future screens targeting stress response

    Selective chemical probes can untangle the complexity of the plant cell endomembrane system

    No full text
    The endomembrane system is critical for plant growth and development and understanding its function and regulation is of great interest for plant biology research. Small-molecule targeting distinctive endomembrane components have proven powerful tools to dissect membrane trafficking in plant cells. However, unambiguous elucidation of the complex and dynamic trafficking processes requires chemical probes with enhanced precision. Determination of the mechanism of action of a compound, which is facilitated by various chemoproteomic approaches, opens new avenues for the improvement of its specificity. Moreover, rational molecule design and reverse chemical genetics with the aid of virtual screening and artificial intelligence will enable us to discover highly precise chemical probes more efficiently. The next decade will witness the emergence of more such accurate tools, which together with advanced live quantitative imaging techniques of subcellular phenotypes, will deepen our insights into the plant endomembrane system

    Exploring the cortical habituation in migraine patients based on contingent negative variation

    No full text
    IntroductionCognitive dysfunction has frequently been found in patients with migraine. The so-called contingent negative variation (CNV) and EEG power spectral densities may be the best choices to explore the underlining pathophysiology, such as cortical inhibition and habituation.MethodsThirty migraine patients without aura and healthy controls matched for sex, age, and education were recruited separately for CNV recording. The amplitudes, latencies, and squares of different CNV components, such as oCNV, iCNV, tCNV, and PINV, were selected and analyzed. Behavioral data, such as manual reaction time (RT), were analyzed. We used the Person correlation coefficient R to analyze different ERP components in relation to clinical characteristics. A multiple regression analysis was conducted for the migraine group. Spectral analysis of EEG data from all channels using the fast Fourier transform (FFT).ResultsThe migraine group had longer A-latency, C-latency, and iCNV-latency than the control group. The migraine group had higher iCNV-amplitude, oCNV-amplitude, and tCNV-amplitude than the control group, especially those located in the occipital area. The iCNV-square, oCNV-square, tCNV-square, or PINV-square in the migraine group was significantly larger than the control group. Different correlations were found between clinical characteristics and ERP components. The delta or theta activity in the migraine group was statistically lower than in the control group.DiscussionOur study has revealed that migraine attacks may influence responsivity, pre-activation, habituation, and cortical inhibition not only on the behavioral level but also on the electrophysiological level. Abnormal changes in cortical habituation and inhibition can be interpreted as CNV components. Additionally, analyses have revealed correlations between CNV components and various factors, including age, the clinical course of the condition, attack frequency, pain intensity, and duration. Thus, repetitive migraine attacks can lead to a reduction in cortical inhibition and subsequent impairment in executive function

    Association of plasma apolipoprotein CIII, high sensitivity C-reactive protein and tumor necrosis factor-α contributes to the clinical features of coronary heart disease in Li and Han ethnic groups in China

    No full text
    Abstract Background Apolipoprotein CIII (apoCIII) is an independent risk for coronary heart disease (CHD). In this study, we investigated the associations among plasma apoCIII, hs-CRP and TNF-α levels and their roles in the clinical features of CHD in the Li and Han ethnic groups in China. Methods A cohort of 474 participants was recruited (238 atherosclerotic patients and 236 healthy controls) from the Li and Han ethnic groups. Blood samples were obtained to evaluate apoCIII, TNF-α, hs-CRP and lipid profiles. Chi-squared, t-tests, and Kruskal–Wallis or Wilcoxon–Mann–Whitney tests, Pearson or Spearman correlation tests and multiple unconditional logistic regression were employed to analyze lipid profiles and variations in plasma apoCIII, TNF-α, hs-CRP in subgroups of CHD and their contributions to CHD using SPSS version 20.0 software. Results Compared to healthy participants, unfavorable lipid profiles were identified in CHD patients with enhanced systolic pressure, diastolic pressure, fasting blood sugar (FBS), TG, TC, LDL-C, apoB, Lp(a) (P  0.05). Plasma apoCIII, TNF-α and hs-CRP contributed to the development of CHD (OR = 2.554, 7.252, 6.035, P < 0.01) with paired correlations in CHD patients (apoCIII vs. TNF-α, r = 0.425; apoCIII vs. hs-CRP, r = 0.319; TNF-α vs. hs-CRP, r = 0.400, P < 0.01). Conclusions Association among plasma apoCIII, hs-CRP and TNF-α interacts with unfavorable lipid profiles to contribute to the clinical features of CHD with stable angina, unstable angina, and AMI in the Li and Han ethnic groups in China

    Cortical Reorganization After Optical Alignment in Strabismic Patients Outside of Critical Period

    No full text
    PURPOSE. To measure visual crowding, an essential bottleneck on object recognition and reliable psychophysical index of cortex organization, in older children and adults with horizontal concomitant strabismus before and after strabismus surgery. METHODS. Using real-time eye tracking to ensure gaze-contingent display, we examined the peripheral visual crowding effects in older children and adults with horizontal concomitant strabismus but without amblyopia before and after strabismus surgery. Patients were asked to discriminate the orientation of the central tumbling E target letter with flankers arranged along the radial or tangential axis in the nasal or temporal hemifield at different eccentricities (5 degrees or 10 degrees). The critical spacing value, which is the minimum space between the target and the flankers required for correct discrimination, was obtained for comparisons before and after strabismus surgery. RESULTS. Twelve individuals with exotropia (6 males, 21.75 +/- 7.29 years, mean +/- SD) and 15 individuals with esotropia (6 males, 24.13 +/- 5.96 years) participated in this study. We found that strabismic individuals showed significantly larger critical spacing with nasotemporal asymmetry along the radial axis that related to the strabismus pattern, with exotropes exhibiting stronger temporal field crowding and esotropes exhibiting stronger nasal field crowding before surgical alignment. After surgery, the critical spacing was reduced and rebalanced between the nasal and temporal hemifields. Furthermore, the postoperative recovery of stereopsis was associated with the extent of nasotemporal balance of critical spacing. CONCLUSIONS. We find that optical realignment (i.e., strabismus surgery) can normalize the enlarged visual crowding effects, a reliable psychophysical index of cortical organization, in the peripheral visual field of older children and adults with strabismus and rebalance the nasotemporal asymmetry of crowding, promoting the recovery of postoperative stereopsis. Our results indicated a potential of experience-dependent cortical organization after axial alignment even for individuals who are out of the critical period of visual development, illuminating the capacity and limitations of optics on sensory plasticity and emphasizing the importance of ocular correction for clinical practice.</p
    corecore