11 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Information in United States Patents on works related to ‘Natural Fibers’: 2000-2018

    No full text

    Amerasia Journal

    No full text

    Dendron-Mediated Self-Assembly, Disassembly, and Self-Organization of Complex Systems

    No full text

    Measurement of inclusive and differential cross sections for W+^{+}W^{-} production in proton-proton collisions at s= \sqrt{s} = 13.6 TeV

    No full text
    Measurements at s= \sqrt{s}= 13.6 TeV of the opposite-sign W boson pair production cross section in proton-proton collisions are presented. The data used in this study were collected with the CMS detector at the CERN LHC in 2022, and correspond to an integrated luminosity of 34.8 fb1 ^{-1} . Events are selected by requiring one electron and one muon of opposite charge. A maximum likelihood fit is performed on signal- and background-enriched data categories defined by the flavour and charge of the leptons, the number of jets, and number of jets originating from b quarks. An inclusive W+^{+}W^{-} production cross section of 125.7 ± \pm 5.6 pb is measured, in agreement with standard model predictions. Cross sections are also reported in a fiducial region close to that of the detector acceptance, both inclusively and differentially, as a function of the jet multiplicity in the event. For first time in proton-proton collisions, WW events with at least two reconstructed jets are studied and compared with recent theoretical predictions.Measurements at s\sqrt{s} = 13.6 TeV of the opposite-sign W boson pair production cross section in proton-proton collisions are presented. The data used in this study were collected with the CMS detector at the CERN LHC in 2022, and correspond to an integrated luminosity of 34.8 fb1^{-1}. Events are selected by requiring one electron and one muon of opposite charge. A maximum likelihood fit is performed on signal- and background-enriched data categories defined by the flavour and charge of the leptons, the number of jets, and number of jets originating from b quarks. An inclusive W+^+W^- production cross section of 125.7 ±\pm 5.6 pb is measured, in agreement with standard model predictions. Cross sections are also reported in a fiducial region close to that of the detector acceptance, both inclusively and differentially, as a function of the jet multiplicity in the event. For first time in proton-proton collisions, WW events with at least two reconstructed jets are studied and compared with recent theoretical predictions

    Search for CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is reported for charge-parity D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays, using data collected in proton-proton collisions at s\sqrt{s} = 13 TeV recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 fb1^{-1}, which consists of about 10 billion events containing a pair of ẖadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays D+^{*+}\to D0π+^0\pi^+ and D^{*-}\to D0π^0\pi^-. The D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP asymmetry in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} is measured to be ACPA_{CP}( KS0^0_\mathrm{S}KS0^0_\mathrm{S}) = (6.2 ±\pm 3.0 ±\pm 0.2 ±\pm 0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry in the D0^0 \to KS0π+π^0_\mathrm{S}\pi^+\pi^- decay. This is the first D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state

    Search for a resonance decaying to a W boson and a photon in proton-proton collisions at s= \sqrt{s} = 13 TeV using leptonic W boson decays

    No full text
    A search for a new charged particle X with mass between 0.3 and 2.0 TeV decaying to a W boson and a photon is presented, using proton-proton collision data at a center-of-mass energy of 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb1 ^{-1} . Particle X has electric charge ± \pm 1 and is assumed to have spin 0. The search is performed using the electron and muon decays of the W boson. No significant excess above the predicted background is observed. The upper limit at 95% confidence level on the product of the production cross section of the X and its branching fraction to a W boson and a photon is found to be 94 (137) fb for a 0.3 TeV resonance and 0.75 (0.81) fb for a 2.0 TeV resonance, for an X width-to-mass ratio of 0.01% (5%). This search presents the most stringent constraints to date on the existence of such resonances across the probed mass range. A statistical combination with an earlier study based on the hadronic decay mode of the W boson is also performed, and the upper limit at 95% confidence level for a 2.0 TeV resonance is reduced to 0.50 (0.63) fb for an X width-to-mass ratio of 0.01% (5%).A search for a new charged particle X with mass between 0.3 and 2.0 TeV decaying to a W boson and a photon is presented, using proton-proton collision data at a center-of-mass energy of 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb1^{-1}. Particle X has electric charge ±\pm1 and is assumed to have spin 0. The search is performed using the electron and muon decays of the W boson. No significant excess above the predicted background is observed. The upper limit at 95% confidence level on the product of the production cross section of the X and its branching fraction to a W boson and a photon is found to be 94 (137) fb for a 0.3 TeV resonance and 0.75 (0.81) fb for a 2.0 TeV resonance, for an X width-to-mass ratio of 0.01% (5%). This search presents the most stringent constraints to date on the existence of such resonances across the probed mass range. A statistical combination with an earlier study based on the hadronic decay mode of the W boson is also performed, and the upper limit at 95% confidence level for a 2.0 TeV resonance is reduced to 0.50 (0.63) fb for an X width-to-mass ratio of 0.01% (5%)

    Search for CP violation in D0KS0KS0 \mathrm{D^0}\to\mathrm{K^0_S}\mathrm{K^0_S} decays in proton-proton collisions at s= \sqrt{s} = 13 TeV

    No full text
    A search is reported for charge-parity CP violation in D0KS0KS0 \mathrm{D^0}\to\mathrm{K^0_S}\mathrm{K^0_S} decays, using data collected in proton-proton collisions at s= \sqrt{s} = 13 TeV recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 fb1 ^{-1} , which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D \mathrm{D} meson is determined by the pion charge in the reconstructed decays D+D0π+ \mathrm{D}^{*+}\to\mathrm{D^0}\pi^{+} and DD0π \mathrm{D}^{*-}\to\overline{\mathrm{D}}^{0}\pi^{-} . The CP asymmetry in D0KS0KS0 \mathrm{D^0}\to\mathrm{K^0_S}\mathrm{K^0_S} is measured to be ACP(KS0KS0)= A_{CP}(\mathrm{K^0_S}\mathrm{K^0_S}) = (6.2 ± \pm 3.0 ± \pm 0.2 ± \pm 0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the CP asymmetry in the D0KS0π+π \mathrm{D^0}\to\mathrm{K^0_S}\pi^{+}\pi^{-} decay. This is the first CP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state.A search is reported for charge-parity D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP violation in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} decays, using data collected in proton-proton collisions at s\sqrt{s} = 13 TeV recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 fb1^{-1}, which consists of about 10 billion events containing a pair of ẖadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays D+^{*+}\to D0π+^0\pi^+ and D^{*-}\to D0π^0\pi^-. The D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S}CPCP asymmetry in D0^0\to KS0^0_\mathrm{S}KS0^0_\mathrm{S} is measured to be ACPA_{CP}( KS0^0_\mathrm{S}KS0^0_\mathrm{S}) = (6.2 ±\pm 3.0 ±\pm 0.2 ±\pm 0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry in the D0^0 \to KS0π+π^0_\mathrm{S}\pi^+\pi^- decay. This is the first D0^0 \to KS0^0_\mathrm{S}KS0^0_\mathrm{S} CPCP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state
    corecore