44 research outputs found

    Global reconstruction reduces the uncertainty of oceanic nitrous oxide emissions and reveals a vigorous seasonal cycle

    Get PDF
    Assessment of the global budget of the greenhouse gas nitrous oxide ([Formula: see text]O) is limited by poor knowledge of the oceanic [Formula: see text]O flux to the atmosphere, of which the magnitude, spatial distribution, and temporal variability remain highly uncertain. Here, we reconstruct climatological [Formula: see text]O emissions from the ocean by training a supervised learning algorithm with over 158,000 [Formula: see text]O measurements from the surface ocean-the largest synthesis to date. The reconstruction captures observed latitudinal gradients and coastal hot spots of [Formula: see text]O flux and reveals a vigorous global seasonal cycle. We estimate an annual mean [Formula: see text]O flux of 4.2 ± 1.0 Tg N[Formula: see text], 64% of which occurs in the tropics, and 20% in coastal upwelling systems that occupy less than 3% of the ocean area. This [Formula: see text]O flux ranges from a low of 3.3 ± 1.3 Tg N[Formula: see text] in the boreal spring to a high of 5.5 ± 2.0 Tg N[Formula: see text] in the boreal summer. Much of the seasonal variations in global [Formula: see text]O emissions can be traced to seasonal upwelling in the tropical ocean and winter mixing in the Southern Ocean. The dominant contribution to seasonality by productive, low-oxygen tropical upwelling systems (>75%) suggests a sensitivity of the global [Formula: see text]O flux to El Niño-Southern Oscillation and anthropogenic stratification of the low latitude ocean. This ocean flux estimate is consistent with the range adopted by the Intergovernmental Panel on Climate Change, but reduces its uncertainty by more than fivefold, enabling more precise determination of other terms in the atmospheric [Formula: see text]O budget

    A Critical Review of the \u3csup\u3e15\u3c/sup\u3eN\u3csub\u3e2\u3c/sub\u3e Tracer Method to Measure Diazotrophic Production in Pelagic Ecosystems

    Get PDF
    Dinitrogen (N2) fixation is an important source of biologically reactive nitrogen (N) to the global ocean. The magnitude of this flux, however, remains uncertain, in part because N2 fixation rates have been estimated following divergent protocols and because associated levels of uncertainty are seldom reported—confounding comparison and extrapolation of rate measurements. A growing number of reports of relatively low but potentially significant rates of N2 fixation in regions such as oxygen minimum zones, the mesopelagic water column of the tropical and subtropical oceans, and polar waters further highlights the need for standardized methodological protocols for measurements of N2 fixation rates and for calculations of detection limits and propagated error terms. To this end, we examine current protocols of the 15N2 tracer method used for estimating diazotrophic rates, present results of experiments testing the validity of specific practices, and describe established metrics for reporting detection limits. We put forth a set of recommendations for best practices to estimate N2 fixation rates using 15N2 tracer, with the goal of fostering transparency in reporting sources of uncertainty in estimates, and to render N2 fixation rate estimates intercomparable among studies

    Genetic and Environmental Influences on Chinese Language and Reading Abilities

    Get PDF
    This study investigated the etiology of individual differences in Chinese language and reading skills in 312 typically developing Chinese twin pairs aged from 3 to 11 years (228 pairs of monozygotic twins and 84 pairs of dizygotic twins; 166 male pairs and 146 female pairs). Children were individually given tasks of Chinese word reading, receptive vocabulary, phonological memory, tone awareness, syllable and rhyme awareness, rapid automatized naming, morphological awareness and orthographic skills, and Raven's Coloured Progressive Matrices. All analyses controlled for the effects of age. There were moderate to substantial genetic influences on word reading, tone awareness, phonological memory, morphological awareness and rapid automatized naming (estimates ranged from .42 to .73), while shared environment exerted moderate to strong effects on receptive vocabulary, syllable and rhyme awareness and orthographic skills (estimates ranged from .35 to .63). Results were largely unchanged when scores were adjusted for nonverbal reasoning as well as age. Findings of this study are mostly similar to those found for English, a language with very different characteristics, and suggest the universality of genetic and environmental influences across languages

    Ideas and Perspectives: A Strategic Assessment of Methane and Nitrous Oxide Measurements In the Marine Environment

    Get PDF
    In the current era of rapid climate change, accurate characterization of climate-relevant gas dynamics-namely production, consumption, and net emissions-is required for all biomes, especially those ecosystems most susceptible to the impact of change. Marine environments include regions that act as net sources or sinks for numerous climateactive trace gases including methane (CH4) and nitrous oxide (N2O). The temporal and spatial distributions of CH4 and N2O are controlled by the interaction of complex biogeochemical and physical processes. To evaluate and quantify how these mechanisms affect marine CH4 and N2O cycling requires a combination of traditional scientific disciplines including oceanography, microbiology, and numerical modeling. Fundamental to these efforts is ensuring that the datasets produced by independent scientists are comparable and interoperable. Equally critical is transparent communication within the research community about the technical improvements required to increase our collective understanding of marine CH4 and N2O. A workshop sponsored by Ocean Carbon and Biogeochemistry (OCB) was organized to enhance dialogue and collaborations pertaining to marine CH4 and N2O. Here, we summarize the outcomes from the workshop to describe the challenges and opportunities for near-future CH4 and N2O research in the marine environment

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    ẟ15N (ẟ18O) scale contraction was calculated as the percent deviation of the difference between measured ẟ15N (ẟ18O) values of IAEA-NO3 and USGS-34 from the true difference (Biological Nitrogen Isotope Fractionation project)

    No full text
    Dataset: Scale contractionsẟ15N (ẟ18O) scale contraction was calculated as the percent deviation of the difference between measured ẟ15N (ẟ18O) values of IAEA-NO3 and USGS-34 from the true difference. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/865043NSF Division of Ocean Sciences (NSF OCE) OCE-155447

    Effects of sample volume on N2O recovery and isotopic analysis (Biological Nitrogen Isotope Fractionation project)

    No full text
    Dataset: Incomplete spargingIncomplete N2O analyte recovery during sparging of high-volume samples and associated N and O isotopic ratio offsets. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/865053NSF Division of Ocean Sciences (NSF OCE) OCE-155447

    Analyses of nitrate reference solutions in 18O-labeled water with the denitrifier method (Biological Nitrogen Isotope Fractionation project)

    No full text
    Dataset: 18O-labeled waterIAEA-NO3 and USGS-34 reference solutions were supplemented with 18O-labeled water and analyzed for N and O isotope ratios. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/865519NSF Division of Ocean Sciences (NSF OCE) OCE-155447

    O exchange with water during denitrification with the denitrifier method (Biological Nitrogen Isotope Fractionation project)

    No full text
    Dataset: O exchange ratioEffects of sample volume and salinity on O atom exchange with water during denitrification with the denitrifier method. The percentages of O atom exchange were derived from the regression slopes of ẟ18ON2O vs. ẟ18OH2O. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/865666NSF Division of Ocean Sciences (NSF OCE) OCE-155447
    corecore