18 research outputs found

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation

    A Cadaveric Study of Radial Nerve Course and its Clinical Implications on Radial Nerve Block at Elbow

    No full text
    Introduction: Upper limb nerve blocks are done commonly by brachial plexus (C5-T1) blocks via supraclavicular, infraclavicular approaches. Sometimes a single peripheral nerve needs additional block with local anaesthetic to achieve adequate block. Peripheral nerve blocks are useful for minor surgical procedures in a single nerve distribution. Aim: To study the course and clinical significance of the radial nerve in 50 cadaveric upper limbs. Materials and Methods: A cross-sectional study was conducted on 50 intact dissected upper limbs. The upper limbs were obtained from the Department of Anatomy, Sri Ramachandra Medical College from August 2020 to December 2020. Radial nerve was exposed by routine dissection in all the upper limbs and its entire course was studied and observed for any variation. The distance from the biceps tendon to the radial nerve at the elbow, distance of the radial nerve in the Lateral Intermuscular Septum (LIS) from the epicondyles at the elbow were measured. The results obtained were statistically analysed using SPSS version 16.0. Results: In present study, the mean distance of the radial nerve in the LIS to the medial epicondyle was 12.4±0.31 cm and to the lateral epicondyle was 12.1±0.28 cm. The mean distance from the biceps tendon to the radial nerve at the elbow was 1.75±0.22 cm. Conclusion: From the present study, it can be inferred that effective peripheral radial nerve block can be achieved by blocking the nerve 1.75 cm lateral to the biceps tendon at the elbow 3 cm above the elbow crease. This can be made comfortable to the patient and more precise by ultrasound localisation of the radial nerve

    Study on the Inter-Laminar Shear Strength and Contact Angle of Glass Fiber/ABS and Glass Fiber/Carbon Fiber/ABS Hybrid Composites

    Get PDF
    In recent days, the uses of 3D printing have been successfully implemented in various applications due to their advantages. Besides, the need for sustainable choice has created a demand for the augmented use of thermoplastic composites. Thus, additive manufacturing techniques have become the essence of composite fabrication to achieve an automated and flexible fabrication technique. The present study used fused deposition modelling (FDM) and hot press moulding technique to produce composite samples. The composite laminates were fabricated by using acrylonitrile butadiene styrene (ABS) as polymer and woven glass fiber (GF) and woven carbon fiber (CF) used as reinforcements. Further, the laminates were subjected to inter-laminar shear strength (ILSS) and contact angle. The inter-laminar shear strength and the contact angle of hybrid samples were compared with virgin ABS and pure glass fiber-reinforced composites. The study reported a maximum ILSS of 198.5MPa achieved by GF/CF/ABS hybrid composites, which was higher by 17% and 217% compared with GF/ABS and ABS samples, respectively. The contact angle results showed an increase due to the incorporation of fibers with ABS by 5% and 13% in GF/ABS and GF/CF/ABS, respectively, contributing to the adhesion. The contact angle values achieved were 100.5°, 105.15°, and 113.39° by ABS, GF/ABS and GF/CF/ABS making them hydrophobic in nature. These developed reinforced materials, such as carbon fiber, glass fiber and ABS matrix composites, could be used in automotive, aerospace and wind energy applications

    Desirability of Tribo-Performance of Natural Based Thermoset and Thermoplastic Composites: A Concise Review

    Get PDF
    Tribology, which may be defined as an interdisciplinary subject, deals with relative motion between two or more bodies, i.e., surfaces that are interacting relatively. Thus, tribology is a science covering three vital classes, namely, wear, friction and lubrication. The focus of this article is to bring out the elements that are influencing the wear-resisting behavior of thermosetting and thermoplastic composites with natural-based constituents. Based on the literature resources, the treatments on the natural fibers acting as reinforcement, and the addition of fillers in resin acting as matrix could improve the wear-resisting behavior of the composites. Additionally, other conditions such as sliding speed, sliding velocity, sliding distance and operating temperature could also influence the friction coefficient and specific wear rate of the natural-based composites

    Mechanical, Absorption and Swelling Properties of Vinyl Ester Based Natural Fibre Hybrid Composites

    Get PDF
    Natural fibres such as Banana (B), Jute (J) and Kenaf (K) were hybridized in different stacking sequences in vinyl ester. The composites with hybridized fibres were tested to evaluate their tensile, flexural and impact properties. Further, they were also tested for their water absorption and thickness swelling behavior. The hybridization of the fibre mats had an encouraging outcome on the mechanical behavior. The JKBKBJ hybrid composite possessed the maximum tensile strength (34.12 MPa) while maximum stiffness of 1.667 GPa was observed for the KBJJBK hybrid composites. The observations from the flexural testing indicated that the hybrid composites resisted the flexural load for higher displacement. All the hybrid configurations presented better impact strength over the composites reinforced with kenaf and jute fibres. Among the hybrid composites investigated, the KJBBJK hybrid composite displayed highest impact strength (12.32 kJ/m2). The improved strength, stiffness and lower moisture absorption properties make the composites with hybridized fibres a potential candidate for the light weight structural applications

    Influence of a silica aerogel filler on the mechanical, thermal, and physical properties of flax/epoxy composite

    No full text
    The influence of Maerogel (MA) on the material properties of the flax fiber reinforced epoxy composites has been investigated. The composites were fabricated using the hot press molding method with incorporation of MA, a kind of silica aerogel derived from the rice husk ash. The effect of different MA concentrations on the thermal, mechanical, and physical properties of flax/epoxy composites was investigated

    Evolution, Prospects, and Predicaments of Polymers in Marine Applications: A Potential Successor to Traditional Materials

    No full text
    Polymers are ideal solutions for architects and constructors in the marine field who require materials that can achieve light and stable structures owing to their unique advantages. For instance, they possess a high strength-to-weight ratio, high wear resistance and fatigue strength, resistance to corrosion, ease of fabrication, and superior vibration damping behavior. These properties make polymers well suited for marine-based applications. However, polymers have their disadvantages, such as contributing to plastic pollution, which has a detrimental impact on the environment. In recent times, various concurrent methods have been employed to advance the future of polymers. This review explores (i) an overall view of polymers used in marine industries, (ii) a focus on reducing plastic wastage, (iii) challenges involved in recycling polymers and ensuring their sustainability, and (iv) the development of renewable plastics

    Performance of Sisal/Hemp Bio-based Epoxy Composites Under Accelerated Weathering

    No full text
    The biocomposites were produced by layering sequence of pure sisal fiber mat (SSSS), pure hemp fiber mat (HHHH), and their hybrid mats and then subjected to accelerated weathering conditions. The composite specimens were conditioned under ultraviolet (UV) light and water spray simultaneously for 2222 h, which corresponds to approximately 1 year of the outdoor conditions. Mechanical properties and thermogravimetric analysis (TGA) of the weathered composites were compared to the dry or unweathered composites. Chemical changes to the bio-based epoxy matrix and natural fiber induced by photodegradation were evident as a reduction in intensity and broadening of characteristic peaks from the Fourier Transform Infrared spectroscopy (FTIR) analysis. Tensile strength and flexural strength of the weathered HSSH and HSHS declined by 7%, 13%, 25%, and 26%, respectively. Degradation effects of weathering were also visible from the lower residue of the weathered composite specimens from the thermogravimetric analysis. Despite the slight drop in impact strength, all the weathered composite specimens had good impact resistance. Furthermore, the hybrid composites exposed to weathering had nearly equivalent impact strength compared to the pure sisal and hemp-based composites under the impact load. Based on this observation, sisal/hemp fiber bio-epoxy based hybrid composites are recommended for the outdoor structural applications requiring impact resistance
    corecore