60 research outputs found

    Dielectric Behaviour of Solution Grown Poly(Vinyl) Pyrrolidone Films

    Get PDF

    MutLα heterodimers modify the molecular phenotype of Friedreich ataxia

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Background: Friedreich ataxia (FRDA), the most common autosomal recessive ataxia disorder, is caused by a dynamic GAA repeat expansion mutation within intron 1 of FXN gene, resulting in down-regulation of frataxin expression. Studies of cell and mouse models have revealed a role for the mismatch repair (MMR) MutS-heterodimer complexes and the PMS2 component of the MutLα complex in the dynamics of intergenerational and somatic GAA repeat expansions: MSH2, MSH3 and MSH6 promote GAA repeat expansions, while PMS2 inhibits GAA repeat expansions. Methodology/Principal Findings: To determine the potential role of the other component of the MutLα complex, MLH1, in GAA repeat instability in FRDA, we have analyzed intergenerational and somatic GAA repeat expansions from FXN transgenic mice that have been crossed with Mlh1 deficient mice. We find that loss of Mlh1 activity reduces both intergenerational and somatic GAA repeat expansions. However, we also find that loss of either Mlh1 or Pms2 reduces FXN transcription, suggesting different mechanisms of action for Mlh1 and Pms2 on GAA repeat expansion dynamics and regulation of FXN transcription. Conclusions/Significance: Both MutLα components, PMS2 and MLH1, have now been shown to modify the molecular phenotype of FRDA. We propose that upregulation of MLH1 or PMS2 could be potential FRDA therapeutic approaches to increase FXN transcription. © 2014 Ezzatizadeh et al.This article has been made available through the Brunel Open Access Publishing Fund

    Generation and characterisation of Friedreich ataxia YG8R mouse fibroblast and neural stem cell models

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Background: Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by GAA repeat expansion in the first intron of the FXN gene, which encodes frataxin, an essential mitochondrial protein. To further characterise the molecular abnormalities associated with FRDA pathogenesis and to hasten drug screening, the development and use of animal and cellular models is considered essential. Studies of lower organisms have already contributed to understanding FRDA disease pathology, but mammalian cells are more related to FRDA patient cells in physiological terms. Methodology/Principal Findings: We have generated fibroblast cells and neural stem cells (NSCs) from control Y47R mice (9 GAA repeats) and GAA repeat expansion YG8R mice (190+120 GAA repeats). We then differentiated the NSCs in to neurons, oligodendrocytes and astrocytes as confirmed by immunocytochemical analysis of cell specific markers. The three YG8R mouse cell types (fibroblasts, NSCs and differentiated NSCs) exhibit GAA repeat stability, together with reduced expression of frataxin and reduced aconitase activity compared to control Y47R cells. Furthermore, YG8R cells also show increased sensitivity to oxidative stress and downregulation of Pgc-1α and antioxidant gene expression levels, especially Sod2. We also analysed various DNA mismatch repair (MMR) gene expression levels and found that YG8R cells displayed significant reduction in expression of several MMR genes, which may contribute to the GAA repeat stability. Conclusions/Significance: We describe the first fibroblast and NSC models from YG8R FRDA mice and we confirm that the NSCs can be differentiated into neurons and glia. These novel FRDA mouse cell models, which exhibit a FRDA-like cellular and molecular phenotype, will be valuable resources to further study FRDA molecular pathogenesis. They will also provide very useful tools for preclinical testing of frataxin-increasing compounds for FRDA drug therapy, for gene therapy, and as a source of cells for cell therapy testing in FRDA mice. © 2014 Sandi et al

    A distinct first replication cycle of DNA introduced in mammalian cells

    Get PDF
    Many mutation events in microsatellite DNA sequences were traced to the first embryonic divisions. It was not known what makes the first replication cycles of embryonic DNA different from subsequent replication cycles. Here we demonstrate that an unusual replication mode is involved in the first cycle of replication of DNA introduced in mammalian cells. This alternative replication starts at random positions, and occurs before the chromatin is fully assembled. It is detected in various cell lines and primary cells. The presence of single-stranded regions increases the efficiency of this alternative replication mode. The alternative replication cannot progress through the A/T-rich FRA16B fragile site, while the regular replication mode is not affected by it. A/T-rich microsatellites are associated with the majority of chromosomal breakpoints in cancer. We suggest that the alternative replication mode may be initiated at the regions with immature chromatin structure in embryonic and cancer cells resulting in increased genomic instability. This work demonstrates, for the first time, differences in the replication progression during the first and subsequent replication cycles in mammalian cells

    Temperature effect on lyoluminescence of potassium halide microcrystals in luminol solution

    No full text
    519-523 When -irradiated microcrystals of potassium halides are dissolved in the luminol solution, the lyoluminescence (LL) intensity initially increases linearly with time, attains an optimum value and then decreases and finally disappears. The LL intensity was detected by PMT whose output was connected to X-Y recorder. Temperature dependence of LL intensity shows that initially the peak of LL intensity (Im) increases with temperature, attains a peak value, and then decreases with further increase in temperature. Also, the total intensity IT initially increases, attains an optimum value and then it decreases with further increase in temperature. The decay time decreases with increasing temperature of the solvent, from where the value of activation energy Ea can be calculated. A plausible explanation for the experimental results is given. </smarttagtype

    Phosphorylation/dephosphorylation steps are key events in the phytochrome-mediated enhancement of nitrate reductase mRNA levels and enzyme activity in maize

    No full text
    We provide evidence to show that the increase in nitrate reductase (NR) transcript level stimulated by red light is mediated via a phosphorylation-dependent step. The light-stimulated enhancement of NR transcript level was significantly inhibited by H-7, a protein kinase inhibitor, whereas okadaic acid (OKA), a phosphatase inhibitor, had no effect. Phorbol myristate acetate (PMA), an activator of protein kinase C (PKC) enhanced the NR transcript level in darkgrown leaves. No correlation between changes in NR transcript level and NR activity (NRA) was observed. Inhibition of NRA by OKA and stimulation by H-7 indicated that NRA is increased by dephosphorylating the enzyme. We have identified a protein kinase (C type) that can phosphorylate the purified NR in vitro without the involvement of other accessory proteins. By in vivo labelling with 32P and immunoprecipitation of NR with NR antibodies it was found that in the presence of OKA most NR protein (NRP) was present in phosphorylated state, while with H-7 the reverse was seen. The red (R) and far-red (FR) light reversible experiments suggested that phytochrome (Pfr, an active form) stimulation of NRA is mediated by dephosphorylation of the enzyme, suggesting that Pfr regulates both NR transcription and NRA via phosphorylation/dephosphorylation steps controlled by separate signal transduction pathways

    Common Fixed-Point Theorems for Nonlinear Weakly Contractive Mappings

    No full text
    Some common fixed-point results for mappings satisfying a nonlinear weak contraction condition within the framework of ordered metric spaces are obtained. The accumulated results generalize and extend several comparable results well-known from the literature.http://link.springer.com/journal/112532015-09-30hj201
    corecore