130 research outputs found
Radio Science Investigation on a Mercury Orbiter Mission
We review the results from {\it Mariner 10} regarding Mercury's gravity field
and the results from radar ranging regarding topography. We discuss the
implications of improving these results, including a determination of the polar
component, as well as the opportunity to perform relativistic gravity tests
with a future {\it Mercury Orbiter}. With a spacecraft placed in orbit with
periherm at 400 km altitude, apherm at 16,800 km, period 13.45 hr and latitude
of periherm at +30 deg, one can expect a significant improvement in our
knowledge of Mercury's gravity field and geophysical properties. The 2000 Plus
mission that evolved during the European Space Agency (ESA) {\it Mercury
Orbiter} assessment study can provide a global gravity field complete through
the 25th degree and order in spherical harmonics. If after completion of the
main mission, the periherm could be lowered to 200 km altitude, the gravity
field could be extended to 50th degree and order. We discuss the possibility
that a search for a Hermean ionosphere could be performed during the mission
phases featuring Earth occultations.
Because of its relatively large eccentricity and close proximity to the Sun,
Mercury's orbital motion provides one of the best solar-system tests of general
relativity. Consequently, we emphasize the number of feasible relativistic
gravity tests that can be performed within the context of the parameterized
post-Newtonian formalism - a useful framework for testing modern gravitational
theories. We pointed out that current results on relativistic precession of
Mercury's perihelion are uncertain by 0.5 %, and we discuss the expected
improvement using {\it Mercury Orbiter}. We discuss the importance of {\it
Mercury Orbiter} for setting limits on a possible time variation in theComment: 23 pages, LaTeX, no figure
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
GSR and Blink Features for Cognitive Load Classification
Abstract. A system capable of monitoring its user’s mental workload can evaluate the suitability of its interface and interactions for user’s current cognitive status and properly change them when necessary. Galvanic skin response (GSR) and eye blinks are cognitive load measures which can be captured conveniently and at low cost. The present study has assessed multiple features of these two signals in classification of cognitive workload level. The experiment included arithmetic tasks with four difficulty levels and two types of machine learning algorithms have been applied for classification. Obtained results show that the studied features of blink and GSR can reasonably discriminate workload levels and combining features of the two modalities improves the accuracy of cognitive load classification. We have achieved around 75 % for binary classification and more than 50 % for four-class classification
A paradoxical severe decrease in serum HDL-cholesterol after treatment with a fibrate
There have been a handful of reports in the literature of a paradoxical decrease in serum high density lipoprotein (HDL)-cholesterol in patients on fibrate drugs. The reason for this decline in cardioprotective HDL-cholesterol is not known and may have potential deleterious effects on the patient. This report describes a decrease in serum HDL-cholesterol in a patient on both simvastatin and bezafibrate. This patient also developed abnormal renal function, probably interstitial nephritis. In addition, the literature of fibrate induced serum HDL-cholesterol decline is reviewed and possible mechanisms for this phenomenon discussed. Key Words: fibrate • high density lipoprotein-cholesterol • renal functio
Countryside Survey mapped estimates of Broad Habitat area change in Great Britain between 1998 and 2007
This dataset consists of change data for areas of Broad Habitats across Great Britain between 1998 and 2007. The data are national estimates generated by analysing the sample data from up to 591 1km squares and scaling up to a national level. The data are summarized as percentage increase or decrease in habitat area per Land Class (areas of similar environmental characteristics) and are in a vector format. The sample sites are chosen from a stratified random sample, based on a 15 by 15 km grid of GB and using the 'ITE Land Classification' as a method of stratification. The data were collected as part of Countryside Survey, a unique study or 'audit' of the natural resources of the UK's countryside. The Survey has been carried out at regular intervals since 1978 by the Centre for Ecology & Hydrology. The countryside is sampled and surveyed using rigorous scientific methods, allowing us to compare new results with those from previous surveys. In this way we can detect the gradual and subtle changes that occur in the UK's countryside over time. Surveys have been carried out in 1978, 1984, 1990, 1998 and 2007 with repeated visits to the majority of squares. In addition to habitat areas, vegetation species data, soil data, linear habitat data, and freshwater habitat data are also gathered by Countryside Survey
- …