10,373 research outputs found
Influence of gaseous hydrogen on metals Interim report
Gaseous hydrogen embrittlement in Inconel 718, Inconel 625, AISI 321 stainless steel, Ti-5Al-25Sn ELI, and OFHC coppe
Perturbation theory of the mass enhancement for a polaron coupled to acoustic phonons
We use both a perturbative Green's function analysis and standard
perturbative quantum mechanics to calculate the decrease in energy and the
effective mass for an electron interacting with acoustic phonons. The
interaction is between the difference in lattice displacements for neighbouring
ions, and the hopping amplitude for an electron between those two sites. The
calculations are performed in one, two, and three dimensions, and comparisons
are made with results from other electron-phonon models. We also compute the
spectral function and quasiparticle residue, as a function of characteristic
phonon frequency. There are strong indications that this model is always
polaronic on one dimension, where an unusual relation between the effective
mass and the quasiparticle residue is also found.Comment: 9 pages, 5 figures, submitted to PR
Additions to the Staphylinidae (Coleoptera) of the Cayman Islands
In 1947, 20 species of Staphylinidae were reported from the Cayman Islands as a result of an Oxford University expedition there in 1938 which made extensive use of a light trap. The list is here expanded to 62 species based on collections by R. R. Askew, G. E. Ball, E. A. Dilbert, B. K. Dozier, E. J. Gerberg, P. J. Fitzgerald, M. C. Thomas, and R. H. Turnbow since 1970, all of whom also used light traps except for a collection or two by flight intercept trap
Superthermal electron processes in the upper atmosphere of Uranus: Aurora and electroglow
Strong ultraviolet emissions from the upper atmosphere of Uranus suggest that both auroral and electroglow phenomena are of significant aeronomical consequences in the structure of the upper atmosphere. Combined modeling and data analysis were performed to determine the effect of electroglow and auroral phenomena on the global heat and atomic hydrogen budgets in the Uranus upper atmosphere. The results indicate that the auroral and electroglow heat sources are not adequate to explain the high exospheric temperature observed at Uranus, but that the atomic hydrogen supplied by these processes is more than sufficient to explain the observations. The various superthermal electron distributions modeled have significantly different efficiencies for the various processes such as UV emission, heating, ionization, and atomic hydrogen production, and produce quite different H2 band spectra. However, additional information on the UV spectra and global parameters is needed before modeling can be used to distinguish between the possible mechanisms for electroglow
Thermodynamic equilibrium and its stability for Microcanonical systems described by the Sharma-Taneja-Mittal entropy
It is generally assumed that the thermodynamic stability of equilibrium state
is reflected by the concavity of entropy. We inquire, in the microcanonical
picture, on the validity of this statement for systems described by the
bi-parametric entropy of Sharma-Taneja-Mittal. We analyze
the ``composability'' rule for two statistically independent systems, A and B,
described by the entropy with the same set of the deformed
parameters. It is shown that, in spite of the concavity of the entropy, the
``composability'' rule modifies the thermodynamic stability conditions of the
equilibrium state. Depending on the values assumed by the deformed parameters,
when the relation holds (super-additive systems), the concavity
conditions does imply the thermodynamics stability. Otherwise, when the
relation holds (sub-additive systems), the concavity
conditions does not imply the thermodynamical stability of the equilibrium
state.Comment: 13 pages, two columns, 1 figure, RevTex4, version accepted on PR
Quantum Electrodynamics at Large Distances II: Nature of the Dominant Singularities
Accurate calculations of macroscopic and mesoscopic properties in quantum
electrodynamics require careful treatment of infrared divergences: standard
treatments introduce spurious large-distances effects. A method for computing
these properties was developed in a companion paper. That method depends upon a
result obtained here about the nature of the singularities that produce the
dominant large-distance behaviour. If all particles in a quantum field theory
have non-zero mass then the Landau-Nakanishi diagrams give strong conditions on
the singularities of the scattering functions. These conditions are severely
weakened in quantum electrodynamics by effects of points where photon momenta
vanish. A new kind of Landau-Nakanishi diagram is developed here. It is geared
specifically to the pole-decomposition functions that dominate the macroscopic
behaviour in quantum electrodynamics, and leads to strong results for these
functions at points where photon momenta vanish.Comment: 40 pages, 11 encapsulated postscript figures, latexed,
math_macros.tex can be found on Archive. full postscript available from
http://theorl.lbl.gov/www/theorgroup/papers/35972.p
VLBA imaging of the 3mm SiO maser emission in the disk-wind from the massive protostellar system Orion Source I
We present the first images of the 28SiO v=1, J=2-1 maser emission around the
closest known massive young stellar object Orion Source I observed at 86 GHz
(3mm) with the VLBA. These images have high spatial (~0.3 mas) and spectral
(~0.054 km/s) resolutions. We find that the 3mm masers lie in an X-shaped locus
consisting of four arms, with blue-shifted emission in the south and east arms
and red-shifted emission in the north and west arms. Comparisons with previous
images of the 28SiO v=1,2, J=1-0 transitions at 7mm (observed in 2001-2002)
show that the bulk of the J=2-1 transition emission follows the streamlines of
the J=1-0 emission and exhibits an overall velocity gradient consistent with
the gradient at 7mm. While there is spatial overlap between the 3mm and 7mm
transitions, the 3mm emission, on average, lies at larger projected distances
from Source I (~44 AU compared with ~35 AU for 7mm). The spatial overlap
between the v=1, J=1-0 and J=2-1 transitions is suggestive of a range of
temperatures and densities where physical conditions are favorable for both
transitions of a same vibrational state. However, the observed spatial offset
between the bulk of emission at 3mm and 7mm possibly indicates different ranges
of temperatures and densities for optimal excitation of the masers. We discuss
different maser pumping models that may explain the observed offset. We
interpret the 3mm and 7mm masers as being part of a single wide-angle outflow
arising from the surface of an edge-on disk rotating about a
northeast-southwest axis, with a continuous velocity gradient indicative of
differential rotation consistent with a Keplerian profile in a high-mass
proto-binary.Comment: 11 pages, 12 figures; accepted for publication in A&
DE 1 RIMS operational characteristics
The Retarding Ion Mass Spectrometer (RIMS) on the Dynamics Explorer 1 spacecraft observes both the thermal and superthermal (50 eV) ions of the ionosphere and inner magnetosphere. It is capable of measuring the detailed species distribution function of these ions in many cases. It was equipped with an integral electrometer to permit in-flight calibration of the detector sensitivities and variations thereof. A guide to understanding the RIMS data set is given. The reduction process from count rates to physical quantities is discussed in some detail. The procedure used to establish in-flight calibration is described, and results of a comparison with densities from plasma wave measurements are provided. Finally, a discussion is provided of various anomalies in the data set, including changes of channeltron efficiency with time, spin modulation of the axial sensor heads, apparent potential differences between the sensor heads, and failures of the radial head retarding potential sweep and of the -Z axial head aperture plane bias. Studies of the RIMS data set should be conducted only with a thorough awareness of the material presented here, or in collaboration with one of the scientists actively involved with RIMS data analysis
Perfectionism, achievement motives, and attribution of success and failure in female soccer players
While some researchers have identified adaptive perfectionism as a key characteristic to achieving elite performance in sport, others see perfectionism as a maladaptive characteristic that undermines, rather than helps, athletic performance. Arguing that perfectionism in sport contains both adaptive and maladaptive facets, the present article presents a study of N 5 74 female soccer players investigating how two facets of perfectionism—perfectionistic strivings and negative reactions to imperfection (Stoeber, Otto, Pescheck, Becker, & Stoll, 2007)—are related to achievement motives and attributions of success and failure. Results show that striving for perfection was related to hope of success and self-serving attributions (internal attribution of success). Moreover, once overlap between the two facets of perfectionism was controlled for, striving for perfection was inversely related to fear of failure and self-depreciating attributions (internal attribution of failure). In contrast,
negative reactions to imperfection were positively related to fear of failure and self-depreciating attributions (external attribution of success) and inversely related to self-serving attributions (internal attribution of success and external attribution of failure). It is concluded that striving for perfection in sport is associated with an adaptive pattern of positive motivational orientations and self-serving attributions of success and failure, which
may help athletic performance. In contrast, negative reactions to imperfection are associated with a maladaptive
pattern of negative motivational orientations and self-depreciating attributions, which is likely to undermine athletic performance. Consequently, perfectionism in sport may be adaptive in those athletes who strive for perfection, but can control their negative reactions when performance is less than perfect
- …