362 research outputs found

    An HST/WFPC Survey of Bright Young Clusters in M31. II. Photometry of Less Luminous Clusters in the Fields

    Get PDF
    We report on the properties of 89 low mass star clusters located in the vicinity of luminous young clusters (blue globulars) in the disk of M31. 82 of the clusters are newly detected. We have determined their integrated magnitudes and colors, based on a series of Hubble Space Telescope Wide Field/Planetary Camera 2 exposures in blue and red (HST filters F450W and F814W). The integrated apparent magnitudes range from F450W = 17.5 to 22.5, and the colors indicate a wide range of ages. Stellar color-magnitude diagrams for all clusters were obtained and those with bright enough stars were fit to theoretical isochrones to provide age estimates. The ages range from 12 Myr to >500 Myr. Reddenings, which average E(F450 - F814) = 0.59 with a dispersion of 0.21 magnitudes, were derived from the main sequence fitting for those clusters. Comparison of these ages and integrated colors with single population theoretical models with solar abundances suggests a color offset of 0.085 magnitudes at the ages tested. Estimated ages for the remaining clusters are based on their measured colors. The age-frequency diagram shows a steep decline of number with age, with a large decrease in number per age interval between the youngest and the oldest clusters detected.Comment: 20 pages, 9 figure

    Nonequilibrium brittle fracture propagation: Steady state, oscillations and intermittency

    Full text link
    A minimal model is constructed for two-dimensional fracture propagation. The heterogeneous process zone is presumed to suppress stress relaxation rate, leading to non-quasistatic behavior. Using the Yoffe solution, I construct and solve a dynamical equation for the tip stress. I discuss a generic tip velocity response to local stress and find that noise-free propagation is either at steady state or oscillatory, depending only on one material parameter. Noise gives rise to intermittency and quasi-periodicity. The theory explains the velocity oscillations and the complicated behavior seen in polymeric and amorphous brittle materials. I suggest experimental verifications and new connections between velocity measurements and material properties.Comment: To appear in Phys. Rev. Lett., 6 pages, self-contained TeX file, 3 postscript figures upon request from author at [email protected] or [email protected], http://cnls-www.lanl.gov/homepages/rafi/rafindex.htm

    Hierarchical Structure Formation and Modes of Star Formation in Hickson Compact Group 31

    Full text link
    The handful of low-mass, late-type galaxies that comprise Hickson Compact Group 31 is in the midst of complex, ongoing gravitational interactions, evocative of the process of hierarchical structure formation at higher redshifts. With sensitive, multicolor Hubble Space Telescope imaging, we characterize the large population of <10 Myr old star clusters that suffuse the system. From the colors and luminosities of the young star clusters, we find that the galaxies in HCG 31 follow the same universal scaling relations as actively star-forming galaxies in the local Universe despite the unusual compact group environment. Furthermore, the specific frequency of the globular cluster system is consistent with the low end of galaxies of comparable masses locally. This, combined with the large mass of neutral hydrogen and tight constraints on the amount of intragroup light, indicate that the group is undergoing its first epoch of interaction-induced star formation. In both the main galaxies and the tidal-dwarf candidate, F, stellar complexes, which are sensitive to the magnitude of disk turbulence, have both sizes and masses more characteristic of z=1-2 galaxies. After subtracting the light from compact sources, we find no evidence for an underlying old stellar population in F -- it appears to be a truly new structure. The low velocity dispersion of the system components, available reservoir of HI, and current star formation rate of ~10 solar masses per year, indicate that HCG31 is likely to both exhaust its cold gas supply and merge within ~1 Gyr. We conclude that the end product will be an isolated, X-ray-faint, low-mass elliptical.Comment: 24 pages, 14 figures (including low resolution versions of color images), latex file prepared with emulateapj. Accepted for publication by the Astronomical Journa

    The Sparsest Clusters With O Stars

    Full text link
    There is much debate on how high-mass star formation varies with environment, and whether the sparsest star-forming environments are capable of forming massive stars. To address this issue, we have observed eight apparently isolated OB stars in the SMC using HST's Advanced Camera for Surveys. Five of these objects appear as isolated stars, two of which are confirmed to be runaways. The remaining three objects are found to exist in sparse clusters, with <10 companion stars revealed, having masses of 1-4 solar mass. Stochastic effects dominate in these sparse clusters, so we perform Monte Carlo simulations to explore how our observations fit within the framework of empirical, galactic cluster properties. We generate clusters using a simplistic -2 power-law distribution for either the number of stars per cluster (N_*) or cluster mass (M_cl). These clusters are then populated with stars randomly chosen from a Kroupa IMF. We find that simulations with cluster lower-mass limits of M_cl,lo >20 solar mass and N_*,lo >40 match best with observations of SMC and Galactic OB star populations. We examine the mass ratio of the second-most massive and most massive stars (m_max,2/m_max), finding that our observations all exist below the 20th percentile of our simulated clusters. However, all of our observed clusters lie within the parameter space spanned by the simulated clusters, although some are in the lowest 5th percentile frequency. These results suggest that clusters are built stochastically by randomly sampling stars from a universal IMF with a fixed stellar upper-mass limit. In particular, we see no evidence to suggest a m_max - M_cl relation. Our results may be more consistent with core accretion models of star formation than with competitive accretion models, and they are inconsistent with the proposed steepening of the integrated galaxy IMF (IGIMF).Comment: 19 pages, 12 figures, accepted for publication in Ap

    Phase-Field Model of Mode III Dynamic Fracture

    Full text link
    We introduce a phenomenological continuum model for mode III dynamic fracture that is based on the phase-field methodology used extensively to model interfacial pattern formation. We couple a scalar field, which distinguishes between ``broken'' and ``unbroken'' states of the system, to the displacement field in a way that consistently includes both macroscopic elasticity and a simple rotationally invariant short scale description of breaking. We report two-dimensional simulations that yield steady-state crack motion in a strip geometry above the Griffith threshold.Comment: submitted to PR
    corecore