128 research outputs found

    A Survey on Trickle Algorithm: Comparative Analysis

    Get PDF
    Internet of Things (IoT) is an emerging area in the field of wireless communication. Due to its resource constraint environment, IETF gave a standard for IVP6 routing protocol for low power and lossy networks (RPL). The major component of RPL is Trickle algorithm. It is used to control the number of messages exchanged between devices and helps in early network stabilization. Due to its importance, it is crucial for researchers to understand this protocol. The absence of surveys in Trickle Algorithm motivates us to write this paper. In this paper, we compared different Trickle Algorithms based on performance parameters like convergence time, energy consumption, packet delivery ratio and others. Concluding, we can say that it is open research area in the designing parameters of Trickle�s Algorithms and we believe that this survey will be beneficial for researchers in their relevant work

    Ferromagnetism in Multiferroic BaTiO<sub>3</sub>, Spinel MFe<sub>2</sub>O<sub>4</sub> (M = Mn, Co, Ni, Zn) Ferrite and DMS ZnO Nanostructures

    Get PDF
    Multiferroic magnetoelectric material has significance for new design nano-scale spintronic devices. In single-phase multiferroic BaTiO3, the magnetism occurs with doping of transition metals, TM ions, which has partially filled d-orbitals. Interestingly, the magnetic ordering is strongly related with oxygen vacancies, and thus, it is thought to be a source of ferromagnetism of TM:BaTiO3. The nanostructural MFe2O4 (M = Mn, Co, Ni, Cu, Zn, etc.) ferrite has an inverse spinel structure, for which M2+ ions in octahedral site and Fe3+ ions are equally distributed between tetrahedral and octahedral sites. These antiparallel sub-lattices (cations M2+ and Fe3+ occupy either tetrahedral or octahedral sites) are coupled with O2- ion due to superexchange interaction to form ferrimagnetic structure. Moreover, the future spintronic technologies using diluted magnetic semiconductors, DMS materials might have realized ferromagnetic origin. A simultaneous doping from TM and rare earth ions in ZnO nanoparticles could increase the antiferromagnetic ordering to achieve high-Tc ferromagnetism. The role of the oxygen vacancies as the dominant defects in doped ZnO that must involve bound magnetic polarons as the origin of ferromagnetism

    INCIDENCE OF PRESENCE OF H. PYLORI IN CASES OF CHOLECYSTITIS AND CHOLELITHIASIS IN A RURAL MEDICAL COLLEGE & HOSPITAL

    Get PDF
    Cholecystitis is defined  as inflammation of the gallbladder. Ninety percent of cases involve stones in the cystic duct and gall bladder, (i.e., calculus cholecystitis) with the other 10% of cases representing acalculus cholecystitis.(1) The association of gallstones with Helicobacter pylori has been investigated but not clearly demonstrated. In this study, the presence of H. pylori in the gallbladder mucosa of patients with symptomatic cholecystitis and cholelithiasis was investigated.The study included 50 cases of  cholecystitis and cholelithiasis randomly selected who were admitted to the surgical wards of M.M.I.M.S.R, Mullana in last 2 years.  All patients underwent cholecystectomy and gall bladder mucosa was histopathologically examined by giemsa staining (silver slide test). We concluded that no gall bladder mucosa exhibits presence of H. Pylori. Keywords: Cholelithiasis; Cholecystitis; H. pylori; GiemsaÂ

    Optical microvariability properties of BALQSOs

    Full text link
    We present optical light curves of 19 radio quiet (RQ) broad absorption line (BAL) QSOs and study their rapid variability characteristics. Systematic CCD observations, aided by a careful data analysis procedure, have allowed us to clearly detect any such microvariability exceeding 0.01--0.02 mag. Our observations cover a total of 13 nights (~72 hours) with each quasar monitored for about 4 hours on a given night. Our sample size is a factor of three larger than the number of radio-quiet BALQSOs previously searched for microvariability. We introduce a scaled F-test statistic for evaluating the presence of optical microvariability and demonstrate why it is generally preferable to the statistics usually employed for this purpose. Considering only unambiguous detections of microvariability we find that ~11 per cent of radio-quiet BALQSOs (two out of 19 sources) show microvariability for an individual observation length of about 4 hr. This new duty cycle of 11 per cent is similar to the usual low microvariability fraction of normal RQQSOs with observation lengths similar to those of ours. This result provides support for models where radio-quiet BALQSO do not appear to be a special case of the RQQSOs in terms of their microvariability properties.Comment: 13 pages, 3 figures, 3 tables, accepted for publication in MNRAS main journa

    HealthFog: An ensemble deep learning based Smart Healthcare System for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments

    Get PDF
    Cloud computing provides resources over the Internet and allows a plethora of applications to be deployed to provide services for different industries. The major bottleneck being faced currently in these cloud frameworks is their limited scalability and hence inability to cater to the requirements of centralized Internet of Things (IoT) based compute environments. The main reason for this is that latency-sensitive applications like health monitoring and surveillance systems now require computation over large amounts of data (Big Data) transferred to centralized database and from database to cloud data centers which leads to drop in performance of such systems. The new paradigms of fog and edge computing provide innovative solutions by bringing resources closer to the user and provide low latency and energy-efficient solutions for data processing compared to cloud domains. Still, the current fog models have many limitations and focus from a limited perspective on either accuracy of results or reduced response time but not both. We proposed a novel framework called HealthFog for integrating ensemble deep learning in Edge computing devices and deployed it for a real-life application of automatic Heart Disease analysis. HealthFog delivers healthcare as a fog service using IoT devices and efficiently manages the data of heart patients, which comes as user requests. Fog-enabled cloud framework, FogBus is used to deploy and test the performance of the proposed model in terms of power consumption, network bandwidth, latency, jitter, accuracy and execution time. HealthFog is configurable to various operation modes that provide the best Quality of Service or prediction accuracy, as required, in diverse fog computation scenarios and for different user requirements

    IRS-2 Deficiency Impairs NMDA Receptor-Dependent Long-term Potentiation

    Get PDF
    The beneficial effects of insulin and insulin-like growth factor I on cognition have been documented in humans and animal models. Conversely, obesity, hyperinsulinemia, and diabetes increase the risk for neurodegenerative disorders including Alzheimer's disease (AD). However, the mechanisms by which insulin regulates synaptic plasticity are not well understood. Here, we report that complete disruption of insulin receptor substrate 2 (Irs2) in mice impairs long-term potentiation (LTP) of synaptic transmission in the hippocampus. Basal synaptic transmission and paired-pulse facilitation were similar between the 2 groups of mice. Induction of LTP by high-frequency conditioning tetanus did not activate postsynaptic N-methyl-D-aspartate (NMDA) receptors in hippocampus slices from Irs2−/− mice, although the expression of NR2A, NR2B, and PSD95 was equivalent to wild-type controls. Activation of Fyn, AKT, and MAPK in response to tetanus stimulation was defective in Irs2−/− mice. Interestingly, IRS2 was phosphorylated during induction of LTP in control mice, revealing a potential new component of the signaling machinery which modulates synaptic plasticity. Given that IRS2 expression is diminished in Type 2 diabetics as well as in AD patients, these data may reveal an explanation for the prevalence of cognitive decline in humans with metabolic disorders by providing a mechanistic link between insulin resistance and impaired synaptic transmission

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    corecore