1,289 research outputs found

    Proper-time methods in the presence of non-constant background fields

    Get PDF
    A formalism is developed to enable the construction of the effective action and related quantities in QED for the case of time-varying background electric fields. Some examples are studied and evidence is sought for a possible transition to a phase in which chiral symmetry is spontaneously broken. YCTP-P14-94Comment: 13 pages, YCTP-P14-9

    Optical Properties of Heavily Fluorinated Lanthanide Tris β-Diketonate Phosphine Oxide Adducts

    Get PDF
    The construction of lanthanide(III) chelates that exhibit superior photophysical properties holds great importance in biological and materials science. One strategy to increase the luminescence properties of lanthanide(III) chelates is to hinder competitive non-radiative decay processes through perfluorination of the chelating ligands. Here, the synthesis of two families of heavily fluorinated lanthanide(III) β-diketonate complexes bearing monodentate perfluorinated tris phenyl phosphine oxide ligands have been prepared through a facile one pot reaction [Ln(hfac)3{(ArF)3PO}(H2O)] and [Ln(F7-acac)3{(ArF)3PO}2] (where Ln = Sm3+, Eu3+, Tb3+, Er3+ and Yb3+). Single crystal X-ray diffraction analysis in combination with photophysical studies have been performed to investigate the factors responsible for the differences in the luminescence lifetimes and intrinsic quantum yields of the complexes. Replacement of both bound H2O and C–H oscillators in the ligand backbone has a dramatic effect on the photophysical properties of the complexes, particularly for the near infra-red emitting ion Yb3+, where a five fold increase in luminescence lifetime and quantum yield is observed. The complexes [Sm(hfac)3{(ArF)3PO}(H2O)] (1), [Yb(hfac)3{(ArF)3PO}(H2O)] (5), [Sm(F7-acac)3{(ArF)3PO}2] (6) and [Yb(F7-acac)3{(ArF)3PO}2] (10) exhibit unusually long luminescence lifetimes and attractive intrinsic quantum yields of emission in fluid solution (ΦLn = 3.4% (1); 1.4% (10)) and in the solid state (ΦLn = 8.5% (1); 2.0% (5); 26% (6); 11% (10)), which are amongst the largest values for this class of compounds to date

    An Integrin-Contactin Complex Regulates CNS Myelination by Differential Fyn Phosphorylation

    Get PDF
    The understanding of how adhesion molecules mediate the axon-glial interactions in the CNS that ensure target-dependent survival of oligodendrocytes and initiate myelination remains incomplete. Here, we investigate how signals from adhesion molecules can be integrated to regulate these initial steps of myelination. We first demonstrate that the Ig superfamily molecule contactin is associated in oligodendrocytes with integrins, extracellular matrix receptors that regulate target-dependent survival by amplification of growth factor signaling. This amplification is inhibited by small interfering RNA-mediated knockdown of contactin in oligodendrocytes. In contrast, the presence of L1-Fc, the extracellular portion of a contactin ligand expressed on axons, enhanced survival and additionally promoted myelination in cocultures of neurons and oligodendrocytes. We further demonstrate that the signals from contactin and integrin are integrated by differential phosphorylation of the Src family kinase Fyn. Integrin induced dephosphorylation of the inhibitory Tyr-531, whereas contactin increased phosphorylation of both Tyr-531 and the activating Tyr-420. The combined effect is an enhanced activity of Fyn and also a dynamic regulation of the phosphorylation/dephosphorylation balance of Fyn, as required for normal cell adhesion and spreading. We conclude, therefore, that a novel integrin/contactin complex coordinates signals from extracellular matrix and the axonal surface to regulate both oligodendrocyte survival and myelination by controlling Fyn activity

    Crosstalk between MSH2–MSH3 and polβ promotes trinucleotide repeat expansion during base excision repair

    Get PDF
    Studies in knockout mice provide evidence that MSH2–MSH3 and the BER machinery promote trinucleotide repeat (TNR) expansion, yet how these two different repair pathways cause the mutation is unknown. Here we report the first molecular crosstalk mechanism, in which MSH2–MSH3 is used as a component of the BER machinery to cause expansion. On its own, pol β fails to copy TNRs during DNA synthesis, and bypasses them on the template strand to cause deletion. Remarkably, MSH2–MSH3 not only stimulates pol β to copy through the repeats but also enhances formation of the flap precursor for expansion. Our results provide direct evidence that MMR and BER, operating together, form a novel hybrid pathway that changes the outcome of TNR instability from deletion to expansion during the removal of oxidized bases. We propose that cells implement crosstalk strategies and share machinery when a canonical pathway is ineffective in removing a difficult lesion

    Fecal Viral Load and Norovirus-associated Gastroenteritis

    Get PDF
    We report the median cDNA viral load of norovirus genogroup II is >100-fold higher than that of genogroup I in the fecal specimens of patients with norovirus-associated gastroenteritis. We speculate that increased cDNA viral load accounts for the higher transmissibility of genogroup II strains through the fecal-oral route

    Efficient Processing of Which-Edge Questions on Shortest Path Queries

    Full text link

    Temperature correction to the Casimir force in cryogenic range and anomalous skin effect

    Get PDF
    Temperature correction to the Casimir force is considered for real metals at low temperatures. With the temperature decrease the mean free path for electrons becomes larger than the field penetration depth. In this condition description of metals with the impedance of anomalous skin effect is shown to be more appropriate than with the permittivity. The effect is crucial for the temperature correction. It is demonstrated that in the zero frequency limit the reflection coefficients should coincide with those of ideal metal if we demand the entropy to be zero at T=0. All the other prescriptions discussed in the literature for the n=0n=0 term in the Lifshitz formula give negative entropy. It is shown that the temperature correction in the region of anomalous skin effect is not suppressed as it happens in the plasma model. This correction will be important in the future cryogenic measurements of the Casimir force.Comment: 12 pages, 2 figures, to be published in Phys. Rev.

    Fluctuations of the Retarded Van der Waals Force

    Get PDF
    The retarded Van der Waals force between a polarizable particle and a perfectly conducting plate is re-examined. The expression for this force given by Casimir and Polder represents a mean force, but there are large fluctuations around this mean value on short time scales which are of the same order of magnitude as the mean force itself. However, these fluctuations occur on time scales which are typically of the order of the light travel time between the atom and the plate. As a consequence, they will not be observed in an experiment which measures the force averaged over a much longer time. In the large time limit, the magnitude of the mean squared velocity of a test particle due to this fluctuating Van der Waals force approaches a constant, and is similar to a Brownian motion of a test particle in an thermal bath with an effective temperature. However the fluctuations are not isotropic in this case, and the shift in the mean square velocity components can even be negative. We interpret this negative shift to correspond to a reduction in the velocity spread of a wavepacket. The force fluctuations discussed in this paper are special case of the more general problem of stress tensor fluctuations. These are of interest in a variety of areas fo physics, including gravity theory. Thus the effects of Van der Waals force fluctuations serve as a useful model for better understanding quantum effects in gravity theory.Comment: 14 pages, no figure

    Zero Modes and the Atiyah-Singer Index in Noncommutative Instantons

    Full text link
    We study the bosonic and fermionic zero modes in noncommutative instanton backgrounds based on the ADHM construction. In k instanton background in U(N) gauge theory, we show how to explicitly construct 4Nk (2Nk) bosonic (fermionic) zero modes in the adjoint representation and 2k (k) bosonic (fermionic) zero modes in the fundamental representation from the ADHM construction. The number of fermionic zero modes is also shown to be exactly equal to the Atiyah-Singer index of the Dirac operator in the noncommutative instanton background. We point out that (super)conformal zero modes in non-BPS instantons are affected by the noncommutativity. The role of Lorentz symmetry breaking by the noncommutativity is also briefly discussed to figure out the structure of U(1) instantons.Comment: v3: 24 pages, Latex, corrected typos, references added, to appear in Phys. Rev.

    Synthesis of Autofluorescent Phenanthrene Microparticles via Emulsification: A Useful Synthetic Mimic for Polycyclic Aromatic Hydrocarbon-Based Cosmic Dust

    Get PDF
    Phenanthrene is the simplest example of a polycyclic aromatic hydrocarbon (PAH). Herein, we exploit its relatively low melting point (101 °C) to prepare microparticles from molten phenanthrene droplets by conducting high-shear homogenization in a 3:1 water/ethylene glycol mixture at 105 °C using poly(N-vinylpyrrolidone) as a non-ionic polymeric emulsifier. Scanning electron microscopy studies confirm that this protocol produces polydisperse phenanthrene microparticles with a spherical morphology: laser diffraction studies indicate a volume-average diameter of 25 ± 21 μm. Such projectiles are fired into an aluminum foil target at 1.87 km s−1 using a two-stage light gas gun. Interestingly, the autofluorescence exhibited by phenanthrene aids analysis of the resulting impact craters. More specifically, it enables assessment of the spatial distribution of any surviving phenanthrene in the vicinity of each crater. Furthermore, these phenanthrene microparticles can be coated with an ultrathin overlayer of polypyrrole, which reduces their autofluorescence. In principle, such core−shell microparticles should be useful for assessing the extent of thermal ablation that is likely to occur when they are fired into aerogel targets. Accordingly, polypyrrole-coated microparticles were fired into an aerogel target at 2.07 km s−1. Intact microparticles were identified at the end of carrot tracks and their relatively weak autofluorescence suggests that thermal ablation during aerogel capture did not completely remove the polypyrrole overlayer. Thus, these new core−shell microparticles appear to be useful model projectiles for assessing the extent of thermal processing that can occur in such experiments, which have implications for the capture of intact PAH-based dust grains originating from cometary tails or from plumes emanating from icy satellites (e.g., Enceladus) in future space missions
    • …
    corecore